zoukankan      html  css  js  c++  java
  • 识别某多缺口滑块

    # _*_ coding: utf-8 _*_
    # @Time : 2021/6/28 2:48 下午
    # @Author : YwY(慕白)
    # @File : pdd_token.py
    import cv2
    import time
    
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.webdriver.common.by import By
    from selenium.webdriver.chrome.options import Options
    from selenium import webdriver
    from selenium.webdriver import ActionChains
    import random
    import base64
    from selenium.webdriver.support.wait import WebDriverWait
    
    import utils
    from utils.img_coordinate import base64_api
    from utils import Utils
    
    def get_stacks(distance):
        '''类人行为'''
        distance += 20
    
        '''
        匀加速减速运行
            v = v0 + a * t
    
        位移:
        s = v * t + 0.5 * a * (t**2)
        '''
    
        # 初速度
        v0 = 0
    
        # 加减速度列表
        a_list = [3, 4, 5]
    
        # 时间
        t = 0.2
    
        # 初始位置
        s = 0
    
        # 向前滑动轨迹
        forward_stacks = []
    
        mid = distance * 3 / 5
    
        while s < distance:
            if s < mid:
                a = a_list[random.randint(0, 2)]
    
            else:
                a = -a_list[random.randint(0, 2)]
    
            v = v0
    
            stack = v * t + 0.5 * a * (t ** 2)
    
            # 每次拿到的位移
            stack = round(stack)
    
            s += stack
    
            v0 = v + a * t
    
            forward_stacks.append(stack)
    
        back_stacks = [-1, -1, -2, -3, -2, -3, -2, -2, -3, -1]
    
        return {'forward_stacks': forward_stacks, 'back_stacks': back_stacks}
    
    
    def detect_displacement(img_slider_path, image_background_path):
        """detect displacement"""
        # # 参数0是灰度模式
        image = cv2.imread(img_slider_path, 0)
        template = cv2.imread(image_background_path, 0)
    
        size = image.shape
        # 寻找最佳匹配
        res = cv2.matchTemplate(_tran_canny(image), _tran_canny(template), cv2.TM_CCOEFF_NORMED)
        # 最小值,最大值,并得到最小值, 最大值的索引
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    
        top_left = max_loc[0]  # 横坐标
        # 展示圈出来的区域
        x, y = max_loc  # 获取x,y位置坐标
    
        w, h = image.shape[::-1]  # 宽高
        cv2.rectangle(template, (x, y), (x + w, y + h), (7, 249, 151), 2)
        return top_left
    
    def _tran_canny(image):
        """消除噪声"""
        image = cv2.GaussianBlur(image, (3, 3), 0)
        return cv2.Canny(image, 50, 150)
    
    
    def move_slide(driver):
        '''移动滑块'''
        slider_bs64 = driver.find_element_by_class_name("slider-img-bg").get_attribute("src")
        block_bs64 = driver.find_element_by_class_name("block-img").get_attribute("src")
        slider_content = base64.b64decode(slider_bs64.replace("data:image/jpeg;base64,", ''))
        with open("slider.png", "wb") as fw:
            fw.write(slider_content)
        block_content = base64.b64decode(block_bs64.replace("data:image/png;base64,", ''))
        with open("block.png", "wb") as fw:
            fw.write(block_content)
    
        top_left = detect_displacement("block.png", "slider.png") * 1.6
    
        # 类人行为
    
        stacks = get_stacks(top_left)
        forward_stacks = stacks['forward_stacks']
        back_stacks = stacks['back_stacks']
    
        slider_button = driver.find_element_by_id('slide-button')
        time.sleep(0.1)
    
        ActionChains(driver).click_and_hold(slider_button).perform()
        # time.sleep(0.1)
        # for forward_stack in forward_stacks:
        #     ActionChains(driver).move_by_offset(xoffset=forward_stack, yoffset=0).perform()
        #
        # for back_stack in back_stacks:
        #     ActionChains(driver).move_by_offset(xoffset=back_stack, yoffset=0).perform()
        #
        # time.sleep(0.1)
        #
        # ActionChains(driver).move_by_offset(xoffset=5, yoffset=0).perform()
        # ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform()
    
        ActionChains(driver).move_by_offset(xoffset=top_left, yoffset=0).perform()
        ActionChains(driver).release().perform()
    
    def move_slide(driver):
        '''移动滑块'''
        slider_bs64 = driver.find_element_by_class_name("slider-img-bg").get_attribute("src")
        block_bs64 = driver.find_element_by_class_name("block-img").get_attribute("src")
        slider_content = base64.b64decode(slider_bs64.replace("data:image/jpeg;base64,", ''))
        with open("slider.png", "wb") as fw:
            fw.write(slider_content)
        block_content = base64.b64decode(block_bs64.replace("data:image/png;base64,", ''))
        with open("block.png", "wb") as fw:
            fw.write(block_content)
    
        top_left = detect_displacement("block.png", "slider.png") * 1.6
    
        # 类人行为
    
        stacks = get_stacks(top_left)
        forward_stacks = stacks['forward_stacks']
        back_stacks = stacks['back_stacks']
    
        slider_button = driver.find_element_by_id('slide-button')
        time.sleep(0.1)
    
        ActionChains(driver).click_and_hold(slider_button).perform()
        # time.sleep(0.1)
        # for forward_stack in forward_stacks:
        #     ActionChains(driver).move_by_offset(xoffset=forward_stack, yoffset=0).perform()
        #
        # for back_stack in back_stacks:
        #     ActionChains(driver).move_by_offset(xoffset=back_stack, yoffset=0).perform()
        #
        # time.sleep(0.1)
        #
        # ActionChains(driver).move_by_offset(xoffset=5, yoffset=0).perform()
        # ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform()
    
        ActionChains(driver).move_by_offset(xoffset=top_left, yoffset=0).perform()
        ActionChains(driver).release().perform()
    
    
    def over_pdd_slider_certification(url):
        chrome_options = Options()
        # chrome_options.add_argument('--headless')
        chrome_options.add_argument('--no-sandbox')
        chrome_options.add_argument('--disable-gpu')
        chrome_options.add_argument('--disable-dev-shm-usage')
        # driver = webdriver.Chrome(chrome_options=chrome_options,executable_path=r'/Users/a3530/Desktop/搜索列表/crawlerBaokuan/chromedriver')
        driver = webdriver.Chrome(chrome_options=chrome_options)
        with open("./utils/stealth.min.js","r",encoding="utf8") as fr:
            chrome_js=  fr.read()
        # driver.execute_cdp_cmd("Page.addScriptToEvaluateOnNewDocument", {
        #     "source": """
        #     Object.defineProperty(navigator, 'webdriver', {
        #       get: () => undefined
        #     })
        #   """
        # })
        driver.execute_cdp_cmd("Page.addScriptToEvaluateOnNewDocument",{"source":chrome_js})
        driver.get(url)
        try:
            WebDriverWait(driver, 5, 1).until(EC.presence_of_element_located((By.CLASS_NAME, "intel-btn")))
            driver.find_element_by_class_name("intel-btn").click()
            time.sleep(2)
        except:
            pass
        status = 1
        while status==1:
            try:
                #presence_of_element_located 判断元素是否存在如果不存在会抛错
                time.sleep(3)
                WebDriverWait(driver, 5, 1).until(EC.presence_of_element_located((By.CLASS_NAME, "slider-img-bg")))
                move_slide(driver)
            except:
                status=2
        count = 0
        while count <=3:
            try:
                time.sleep(3)
                WebDriverWait(driver, 5, 1).until(EC.presence_of_element_located((By.CLASS_NAME, "picture-img")))
                picture_img = driver.find_element_by_class_name("picture-img")
                time.sleep(2)
                picture_text = driver.find_element_by_class_name("picture-text").text
                print(picture_text)
                picture_img_src = picture_img.get_attribute("src")
                ActionChains(driver).move_to_element(picture_img).perform()  #移动到图片中间
                ActionChains(driver).move_by_offset(-512/2,-257/2).perform()   #移动到左上角
                print(picture_img.size)
                picture_img_content = base64.b64decode(picture_img_src.replace("data:image/png;base64,", ''))
                with open("picture_img.png", "wb") as fw:
                    fw.write(picture_img_content)
                result = base64_api(uname='yjshitu', pwd='yjshitu2021', img="picture_img.png", typeid=19,content=picture_text)
                if isinstance(result,str):
                    try:
                        Utils.send_feishu_msg(result)
                    except:
                        pass
                    continue
                print("返回值")
                ActionChains(driver).move_by_offset(result[0],result[1]).click().perform()  # 移动到左上角
                print("已移动")
                count+=1
                print(f"当前次数-----{count}")
            except:
                break
        try:
            WebDriverWait(driver, 5, 1).until(EC.presence_of_element_located((By.CLASS_NAME, "picture-img")))
    
        except:
            pass
    
    
    if __name__ == '__main__':
        url ='https://m.pinduoduo.net/psnl_verification.html?VerifyAuthToken=n6g2qliU7MpQ5D4Ch2OBOAabdf7437fa31db92a'
        over_pdd_slider_certification(url)
    
  • 相关阅读:
    51单片机学习笔记(清翔版)(23)——红外通讯
    51单片机学习笔记(清翔版)(22)——数字温度传感器DS18B20
    信号与系统1.1.4信号的分类-信号的MATLAB的表示与绘图
    信号与系统1.1.3信号的分类-能量与功率信号,因果与反因果
    信号与系统1.1.2信号的分类-周期与非周期
    信号与系统1.1.1信号的分类-确定与随机-离散与连续
    51单片机学习笔记(清翔版)(21)——ADDA数模转换
    51单片机学习笔记(清翔版)(19)——串口通信
    ecplise问题总结
    Android广播机制(转)
  • 原文地址:https://www.cnblogs.com/pythonywy/p/15038154.html
Copyright © 2011-2022 走看看