zoukankan      html  css  js  c++  java
  • 机器学习——Canopy算法

    原理:先设置两个先验值r1,r2,我把他们理解为内圈外圈,大家可以跟我学。将所有样本放入一个列表,随机选一个样本拿出来作为第一个簇的簇中心点,然后从列表中剩下的所有样本中随机抽取一个,,计算其与簇中心点的距离。

      如果大于外圈r1,则不属于此簇,而是拿出去单独成为一簇,并作为簇中心点,从列表中删除此样本

      如果大于内圈r2,且小于外圈r1,则属于此簇,放入簇中。

      如果小于内圈r2,哎呀,了不得呀!这家伙和簇中心点很是亲近呐,这么亲近,当然要更新一下簇中心点以示尊敬了。把这个点和簇中心点相加取均值作为此簇新的簇中心点。从列表中删除此样本

      直到列表中没有样本为止

    Canopy算法得到的最终结果的值,聚簇之间是可能存在重叠的,但是不会

    存在某个对象不属于任何聚簇的

    应用场景

  • 相关阅读:
    原生JS---2
    PHP中include和require绝对路径、相对路径问题
    魔方(小玩具)
    html5技术介绍
    苹果电脑 快捷键
    写代码的心得,怎么减少编程中的 bug?
    http状态代码含义表
    开源项目
    蓝牙 CoreBluetooth
    减小iOS应用程序的大小
  • 原文地址:https://www.cnblogs.com/qianchaomoon/p/12129165.html
Copyright © 2011-2022 走看看