zoukankan      html  css  js  c++  java
  • apache mxnet 深度学习神经网络小试

    http://mxnet.incubator.apache.org/versions/master/install/index.html?platform=Windows&language=R&processor=CPU

    1 cran <- getOption("repos")
    2 cran["dmlc"] <- "https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/CRAN/"
    3 options(repos = cran)
    4 install.packages("mxnet")

    安装之前需要指定repository

    一起安装的包

    package ‘brew’ successfully unpacked and MD5 sums checked
    package ‘hms’ successfully unpacked and MD5 sums checked
    package ‘clipr’ successfully unpacked and MD5 sums checked
    package ‘XML’ successfully unpacked and MD5 sums checked
    package ‘Rook’ successfully unpacked and MD5 sums checked
    package ‘downloader’ successfully unpacked and MD5 sums checked
    package ‘igraph’ successfully unpacked and MD5 sums checked
    package ‘influenceR’ successfully unpacked and MD5 sums checked
    package ‘readr’ successfully unpacked and MD5 sums checked
    package ‘rgexf’ successfully unpacked and MD5 sums checked
    package ‘DiagrammeR’ successfully unpacked and MD5 sums checked
    package ‘visNetwork’ successfully unpacked and MD5 sums checked
    package ‘mxnet’ successfully unpacked and MD5 sums checked

    额外的依赖

    To run MXNet you also should have OpenCV and OpenBLAS installed.

    第一步:数据准备

    1 set.seed(0)
    2 #随机分配训练集和测试集
    3 train.ind = sample(1:nrow(inp), size=ceiling(0.7*nrow(inp)))
    4 
    5 train.x = data.matrix(inp[train.ind,NIRDATA])
    6 train.y = inp[train.ind,NIC]
    7 test.x = data.matrix(inp[-train.ind,NIRDATA])
    8 test.y = inp[-train.ind,NIC]

    第二步:创建网络并训练

    1 mx.set.seed(0)
    2 
    3 model <- mx.mlp(train.x, train.y, hidden_node=c(7), out_node=1, out_activation="rmse",
    4                 num.round=2000, array.batch.size=15, learning.rate=0.05, momentum=0.9,
    5                 eval.metric=mx.metric.rmse)

    hidden_node接受向量,c(100,50)代表两层隐含层,分别具有100和50个节点

    out_node输出层

    eval.metric=mx.metric.rmse
    评估方法,rmse 标准差
    评估测试集
    predict(model,test.x)->prd
    
    plot(prd,test.y)
  • 相关阅读:
    jenkins部署前端node项目实例
    阿里云云盘扩容数据盘_Linux
    输入子系统
    触摸屏设备驱动程序
    LCD设备驱动程序
    IIC设备驱动程序
    看门狗驱动程序
    RTC实时时钟驱动
    网络设备驱动程序数据结构
    Linux 设备驱动模型
  • 原文地址:https://www.cnblogs.com/qianheng/p/10850162.html
Copyright © 2011-2022 走看看