zoukankan      html  css  js  c++  java
  • apache mxnet 深度学习神经网络小试

    http://mxnet.incubator.apache.org/versions/master/install/index.html?platform=Windows&language=R&processor=CPU

    1 cran <- getOption("repos")
    2 cran["dmlc"] <- "https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/R/CRAN/"
    3 options(repos = cran)
    4 install.packages("mxnet")

    安装之前需要指定repository

    一起安装的包

    package ‘brew’ successfully unpacked and MD5 sums checked
    package ‘hms’ successfully unpacked and MD5 sums checked
    package ‘clipr’ successfully unpacked and MD5 sums checked
    package ‘XML’ successfully unpacked and MD5 sums checked
    package ‘Rook’ successfully unpacked and MD5 sums checked
    package ‘downloader’ successfully unpacked and MD5 sums checked
    package ‘igraph’ successfully unpacked and MD5 sums checked
    package ‘influenceR’ successfully unpacked and MD5 sums checked
    package ‘readr’ successfully unpacked and MD5 sums checked
    package ‘rgexf’ successfully unpacked and MD5 sums checked
    package ‘DiagrammeR’ successfully unpacked and MD5 sums checked
    package ‘visNetwork’ successfully unpacked and MD5 sums checked
    package ‘mxnet’ successfully unpacked and MD5 sums checked

    额外的依赖

    To run MXNet you also should have OpenCV and OpenBLAS installed.

    第一步:数据准备

    1 set.seed(0)
    2 #随机分配训练集和测试集
    3 train.ind = sample(1:nrow(inp), size=ceiling(0.7*nrow(inp)))
    4 
    5 train.x = data.matrix(inp[train.ind,NIRDATA])
    6 train.y = inp[train.ind,NIC]
    7 test.x = data.matrix(inp[-train.ind,NIRDATA])
    8 test.y = inp[-train.ind,NIC]

    第二步:创建网络并训练

    1 mx.set.seed(0)
    2 
    3 model <- mx.mlp(train.x, train.y, hidden_node=c(7), out_node=1, out_activation="rmse",
    4                 num.round=2000, array.batch.size=15, learning.rate=0.05, momentum=0.9,
    5                 eval.metric=mx.metric.rmse)

    hidden_node接受向量,c(100,50)代表两层隐含层,分别具有100和50个节点

    out_node输出层

    eval.metric=mx.metric.rmse
    评估方法,rmse 标准差
    评估测试集
    predict(model,test.x)->prd
    
    plot(prd,test.y)
  • 相关阅读:
    Lesson 1#05-用户交互和注释
    Lesson 1#04-变量与常量
    Lesson 1#03-Python安装与Hello Python World
    elementUI 表格之合并同类项(包括行和列)
    elementUI 表格之表头合并
    VSCode关于编译scss的插件
    elementUI中的级联选择器,默认赋值不起作用
    highcharts中的环形图
    highcharts中的折线图
    highcharts中的仪表盘样式
  • 原文地址:https://www.cnblogs.com/qianheng/p/10850162.html
Copyright © 2011-2022 走看看