hadoop
Hadoop是一个用于海量数据统计分析的分布式计算框架,封装了分布式计算中比较困难的进程间通信、负载均衡,任务调度等模块,降低了学习门槛。在最简单的程序实现中,仅仅需要重写map和reduce方法,并实现任务提交逻辑。接下来,就让我们一起推开Hadoop的大门,走进大数据的神奇世界。
l Hadoop的组成
Hadoop目前主要包括Hadoop1.x和hadoop2.x,两种版本差距较大,目前常用的是Hadoop2.x版本,所以主要基于Hadoop2.x进行讲解
l 主要组成模块
Hadoop Distributed File System(HDFS):分布式文件存储系统。
MapReduce:并行计算框架(可以自定义计算逻辑的部分)
Yet Another Resource Negotiator(YARN):另一种资源协调者(顾名思义,Hadoop1.x采用的不是这一个资源管理器)
l MapReduce的工作机制
上图是MapReduce的工作原理,首先解释一下各个组成模块的作用。
Job:由客户端向集群提交的一次计算任务。
Task:集群的最小可执行单位(一个Job将会分为多个Task执行)
ResourceManager(以下简称RM):管理整个集群的计算资源,主要用于为每一个Job分配计算资源(整个集群只有一个RM)
Container:资源分配单位,一个Container包括一些CPU和存储资源
NodeManager(以下简称NM):管理单台服务器的计算资源,类似RM的更细粒度实现(集群中每台服务器有一个NM)。
ApplicationMaster(以下简称AM):监控每一个Job的执行情况,包括资源申请、Task调度等。
为了便于理解,下面有一个并不是太恰当的比喻。类似一个学生宿舍的构成,RM相当于宿舍管理处的大BOSS,而Task则相当于一个学生,大BOSS(RM)负责分配一片区域给某个班(Job)的学生(Task)住,而具体每个学生(Task)住哪儿,则由班主任(AM)和楼管(NM)商量(当然一个班级的学生还是可以住在多个楼里边的)。
l 接下来具体解释图中每一步的作用:
client调用Job提交接口,Job被提交到集群上
为了便于标识Job,会首先向RM请求一个唯一ID,并同时检查Job中的输入/输出路径是否存在,如果输入路径不存在,则报错;如果输出路径存在,也会报错(注意别看错了)
获得唯一ID之后,就把Job所需资源(包括Jar包和输入路径信息)上传到HDFS中(因为分布式环境的原因,需要将这些资源上传到所有节点都能访问到的目录,即这里的HDFS)
在完成以上步骤之后,则可以真正提交Job到集群中。
启动一个Job的时候,首先需要启动该Job的AM,所以RM会主动分配NM上的一个Container(一个Container就是一个JVM),用于运行AM守护进程。
初始化Job,包括启动一些Job运行状态跟踪对象。
从HDFS中读取第3步上传的输入路径信息(包括输入文件所在的服务器节点信息,一份输入文件可能存储在多台服务器上)。
根据上一步的文件路径信息,向RM申请所需资源(Container),尽量保证Container和输入文件在同一台服务器上边,能够减小网络IO(即数据本地化)
AM根据RM分配的Container,向Container所属的NM申请启动Task。
Container在收到启动命令之后,会首先从HDFS下载Task所需Jar包和缓存文件等
最后就是Task的正式运行阶段了。
one
1)安装java
[root@redhat 脚本]# yum -y install java-1.8.0-openjdk-devel
[root@hadoop ~]# java -version
1)解压hadoop包
[root@hadoop ~]# tar xf hadoop-2.7.6.tar.gz
[root@hadoop ~]#mv hadoop-2.7.6 /usr/local/hadoop
[root@hadoop ~]#vim /usr/local/hadoop/etc/hadoop/
1)免密码登入
Ssh-keygen -t rsa -b 2048 -N ‘’
for i in nn01 node{1..3}:do
Ssh-copy-id -i id_rsa $i
none
2)禁止远程输入yes
[root@node31 .ssh]# vim /etc/ssh/ssh_config
.....
Host *
GSSAPIAuthentication no
StrictHostKeyChecking no
[root@node31 .ssh]# systemctl restart sshd
mv hadoop-2.7.6 /usr/local/hadoop
[root@hadoop ~]#cd /usr/local/hadoop/
[root@hadoop ~]#cd etc/hadoop/
[root@node31 hadoop]# vim hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.131-11.b12.el7.x86_64/jre
......
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
[root@node31 hadoop]# vim core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://node31:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/var/hadoop</value>
</property>
</configuration>
[root@node31 hadoop]#vim slaves
node32
node33
node34
[root@node31 hadoop]#vim /etc/hosts
192.168.1.31 node31
192.168.1.32 node32
192.168.1.33 node33
192.168.1.34 node34
[root@node31 hadoop]# for i in 192.168.1.{32..34}; do scp /etc/hosts
${i}:/etc/hosts;done
[root@node31 hadoop]#mkdir input
[root@node31 hadoop]#cp *.txt input/
[root@node31 hadoop]#bin/hadoop jar
share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.6.jar wordcount
input output
[root@node31 hadoop]#cd output/
[root@node31 hadoop]#cat part-r-00000
[root@node31 hadoop]# wait
[root@node31 hadoop]#cd ..
[root@node31 hadoop]#vim hdfs-site.xml
<configuration>
<property>
<name>dfs.namenode.http-address</name>
<value>node31:50070</value>
<description> ml </description>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>node31:50090</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
</configuration>
[root@node31hadoop]# for i in node{31..34};do mkdir /var/hadoop/;done [root@node31 hadoop]# cd /usr/local/hadoop/etc/hadoop/
[root@node31 hadoop]# for i in node{31..34};do rsync -aSH --delete
/usr/local/hadoop ${i}:/usr/local/ -e 'ssh' & done
[root@node31 hadoop]# vim core-site.xml
[root@node31 hadoop]# cd etc/hadoop/
[root@node31 hadoop]# vim core-site.xml
[root@node31 hadoop]# vim hdfs-site.xml
[root@node31 hadoop]# for i in 192.168.1.{32..34}; do scp -r
/usr/local/hadoop/ $i:/usr/local/; done
[root@node31 hadoop]#./bin/hdfs namenode -format
[root@node31 hadoop]# ./sbin/start-dfs.sh
[root@node31 hadoop]# jps
[root@node31 hadoop]# ./bin/hdfs dfsadmin -report
two
[root@node31 hadoop]# vim yarn-site.xml
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>node31</value>
</property>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
[root@node31 hadoop]# vim mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
[root@node31 hadoop]# for i in 192.168.1.{32..34}; do scp -r mapred-site.xml $i:/usr/local/hadoop/etc/hadoop/; done
[root@node31 hadoop]# for i in 192.168.1.{32..34}; do scp -r yarn-site.xml $i:/usr/local/hadoop/etc/hadoop/; done
[root@node31 hadoop]# ./sbin/start-yarn.sh
[root@node31 hadoop]# ./bin/yarn node -list
18/07/09 11:24:18 INFO client.RMProxy: Connecting to ResourceManager at node31/192.168.1.31:8032
Total Nodes:3
Node-Id Node-State Node-Http-Address Number-of-Running-Containers
node32:46048 RUNNING node32:8042 0
node34:42782 RUNNING node34:8042 0
node33:35031 RUNNING node33:8042 0
http://192.168.1.31:50070/ http://192.168.1.31:50090/
http://192.168.1.32:8042/ http://192.168.1.32:50075
Hadoop 验证
• 创建文件夹
– ./bin/hadoop fs –mkdir /input
• 导入要分析的文件
– ./bin/hadoop fs –put *.txt /input
Hadoop 验证
• 提交分析作业
– ./bin/hadoop
jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar
wordcount /input
/output
• 查看结果
– ./bin/hadoop fs –cat output/*