zoukankan      html  css  js  c++  java
  • 信息学奥赛一本通【例9.3】求最长不下降序列 题解 动态规划

    题目链接:http://ybt.ssoier.cn:8088/problem_show.php?pid=1259

    题目大意:求一个序列的最长不下降子序列的长度,并输出任意一个最长不下降子序列。

    解题思路:

    定义状态 (f_i) 表示以 (a_i) 结尾的最长不下降子序列的长度。

    (f_i = 1 + minlimits_{j = 1 o i-1(a_j le a_i)} f_j)

    (f_i) 应该等于 (1)(i-1) 范围内的满足 (a_j le a_i)(f_j + 1) 的最大值。

    这样就能够求出所有的 (f_i),则所有 (f_i) 的最大值就是最长不下降子序列的长度。

    但是求出了长度之后还要输出任意一个满足条件的最长上升子序列。

    这种情况下从前往后找是不对的,但是可以从后往前找,即再额外开一个状态 (p_i)(p_i) 表示以 (a_i) 结尾的最长不下降子序列中,(a_i) 的前一个数的下标。然后可以 递归地倒序输出这些数,具体见 output() 函数,output(x)会先去递归地 output (p_x)(即 (x) 的前一个位置),然后输出 (a_x)。(请认真理解 output 函数的递归解法)

    然后这道题就解决了。

    注意下面程序中的全局变量 (x) 表示的是满足 (f_x ge f_i(1 le i le n))(f_x) 是最大的那个),因为我要从 (x) 下标开始(调用 output 函数)递归往前(递归是往前的,但是输出是从前往后输出的,请注意递归函数的写法)。

    示例程序:

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 202;
    int n, a[maxn], f[maxn], p[maxn], x;
    void output(int x)
    {
        if (p[x]) output(p[x]);
        printf("%d ", a[x]);
    }
    int main()
    {
        scanf("%d", &n);
        for (int i = 1; i <= n; i ++) scanf("%d", a+i);
        for (int i = 1; i <= n; i ++)
        {
            f[i] = 1;
            for (int j = 1; j < i; j ++)
            {
                if (a[j] <= a[i] && f[j]+1 > f[i])
                {
                    f[i] = f[j] + 1;
                    p[i] = j;
                }
            }
            if (f[i] > f[x]) x = i;
        }
        printf("max=%d
    ", f[x]);
        output(x);
        return 0;
    }
    
  • 相关阅读:
    JS时间框架之舍弃Moment.js拥抱Day.js
    快速理解Token,Cookie,Session
    一篇文章彻底弄懂CAS实现SSO单点登录原理
    debugging books
    debugging tools
    X64相关文章
    AMD developer
    kernel debugging
    Windows Kernel Security Training Courses
    windbg commands
  • 原文地址:https://www.cnblogs.com/quanjun/p/15026655.html
Copyright © 2011-2022 走看看