题意:给一个无向图,求最小生成树,对图中的一个点进行了度数限制,其度不能超过k。
分析:设该限制点为0号点,先将其删除,然后求各连通分支的最小生成树。然后将0点加回图中,把0点与各个连通分支中与它最近的点相连。
然后可能现在0点的度小于限制,我们不断的增加0点的度,直到超过限制,观察什么时候最小生成树的总长度最小。
对于每次给0点加边我们需要进行一下操作:先以0号点为根,计算出图中各个点通过树枝边到0号点的路径中的最长边长度(BFS或DFS实现)。然后,对于0点的各个非树枝边,我们尝试着选择一个加到树中,加入树中后必然产生环,我们进行破环(删掉环上的某条边),看加哪个边并破环后得到的最小生成树最小,就加那条边并破环。破环的方法如下:例如,我们将0点与a点的边加入树中,则原来a点到0点的树枝边路径中需要有一个边被去掉,我们为了让最小生成树较小,我们选择去掉那条路径上最长的边,这在之前已经计算出来了。
View Code
//poj1639 #include <iostream> #include <string> #include <queue> #include <vector> #include <algorithm> using namespace std; const int maxv = 110; struct edge { int w, v1, v2; edge(int ww, int vv1, int vv2):w(ww), v1(vv1), v2(vv2){} edge(){} }edges[maxv * maxv], bestedge[maxv]; int n, namecount, father[maxv], areacount, best[maxv], limit, answer, fans; string names[maxv]; bool used[maxv][maxv]; vector<vector<edge>>map(maxv); int getid(string name) { int i; for (i = 0; i < namecount; i++) if (name == names[i]) return i; names[namecount++] = name; return namecount - 1; } void init() { int i, length, n1, n2; string name1, name2; memset(used, 0, sizeof(used)); scanf("%d", &n); namecount = 1; answer = 0; areacount = 0; names[0] = "Park"; for (i = 0; i < n; i++) { getchar(); cin >> name1; cin >> name2; cin >> length; n1 = getid(name1); n2 = getid(name2); map[n1].push_back(edge(length, n2, -1)); map[n2].push_back(edge(length, n1, -1)); edges[i].v1 = n1; edges[i].v2 = n2; edges[i].w = length; } scanf("%d", &limit); } bool operator< (edge a, edge b) { return a.w < b.w; } int getanc(int a) { if (father[a] != a) return father[a] = getanc(father[a]); return a; } void makeareas() { int i, n1, n2; for (i = 0; i < namecount; i++) father[i] = i; sort(edges, edges + n); for (i = 0; i < n; i++) { if (edges[i].v1 == 0 || edges[i].v2 == 0) continue; n1 = getanc(edges[i].v1); n2 = getanc(edges[i].v2); if (n1 == n2) continue; father[n1] = n2; used[edges[i].v1][edges[i].v2] = true; used[edges[i].v2][edges[i].v1] = true; } for (i = 1; i < namecount; i++) if (father[i] == i) areacount++; } void maketree() { int vdist[maxv], n1, i, vconect[maxv]; memset(vconect, -1, sizeof(vconect)); for (i = 0; i < map[0].size(); i++) { n1 = getanc(map[0][i].v1); if (vconect[n1] == -1 || vdist[n1] > map[0][i].w) { vconect[n1] = map[0][i].v1; vdist[n1] = map[0][i].w; } } for (i = 1; i < namecount; i++) { if (father[i] != i) continue; used[vconect[i]][0] = true; used[0][vconect[i]] = true; } } void calculate() { int i; for (i = 0; i < n; i++) if (used[edges[i].v1][edges[i].v2]) answer += edges[i].w; fans = answer; } void dp() { int i, l, vused[maxv]; queue<int> q; memset(father, -1, sizeof(father)); memset(vused, 0, sizeof(vused)); memset(best, 0, sizeof(best)); memset(bestedge, 0, sizeof(bestedge)); vused[0] = true; for (i = 0; i < map[0].size(); i++) if (used[0][map[0][i].v1]) { q.push(map[0][i].v1); father[map[0][i].v1] = 0; vused[map[0][i].v1] = true; } while (!q.empty()) { l = q.front(); for (i = 0; i < map[l].size(); i++) if (!vused[map[l][i].v1] && used[l][map[l][i].v1]) { vused[map[l][i].v1] = true; q.push(map[l][i].v1); if (best[l] > map[l][i].w) { best[map[l][i].v1] = best[l]; bestedge[map[l][i].v1] = bestedge[l]; } else { best[map[l][i].v1] = map[l][i].w; bestedge[map[l][i].v1] = map[l][i]; bestedge[map[l][i].v1].v2 = l; } } q.pop(); } } void up1() { int dis = 1000000000, besti, i; for (i = 0; i < map[0].size(); i++) if (!used[0][map[0][i].v1] && dis > map[0][i].w - best[map[0][i].v1]) { dis = map[0][i].w - best[map[0][i].v1]; besti = map[0][i].v1; } used[0][besti] = true; used[besti][0] = true; answer += dis; if (answer < fans) fans = answer; used[bestedge[besti].v1][bestedge[besti].v2] = false; used[bestedge[besti].v2][bestedge[besti].v1] = false; } int main() { int i; //freopen("t.txt", "r", stdin); init(); makeareas(); maketree(); calculate(); for (i = areacount; i < limit; i++) { dp(); up1(); } printf("Total miles driven: %d\n", fans); return 0; }