zoukankan      html  css  js  c++  java
  • Keras学习

    We will go over the following options:
    
        training a small network from scratch (as a baseline)
        using the bottleneck features of a pre-trained network
        fine-tuning the top layers of a pre-trained network
    
    
    '''Train a simple deep CNN on the CIFAR10 small images dataset.
    GPU run command with Theano backend (with TensorFlow, the GPU is automatically used):
        THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatx=float32 python cifar10_cnn.py
    It gets down to 0.65 test logloss in 25 epochs, and down to 0.55 after 50 epochs.
    (it's still underfitting at that point, though).
    '''
    
    from __future__ import print_function
    import keras
    from keras.datasets import cifar10
    from keras.preprocessing.image import ImageDataGenerator
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Activation, Flatten
    from keras.layers import Conv2D, MaxPooling2D
    
    import os
    
    batch_size = 32
    num_classes = 10
    epochs = 1
    data_augmentation = False
    num_predictions = 20
    save_dir = os.path.join(os.getcwd(), 'saved_models')
    model_name = 'keras_cifar10_trained_model.h5'
    
    # The data, shuffled and split between train and test sets:
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    print('x_train shape:', x_train.shape)
    print(x_train.shape[0], 'train samples')
    print(x_test.shape[0], 'test samples')
    
    # Convert class vectors to binary class matrices.
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)
    
    model = Sequential()
    model.add(Conv2D(32, (3, 3), padding='same',
                     input_shape=x_train.shape[1:]))
    model.add(Activation('relu'))
    model.add(Conv2D(32, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    
    model.add(Conv2D(64, (3, 3), padding='same'))
    model.add(Activation('relu'))
    model.add(Conv2D(64, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    
    model.add(Flatten())
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes))
    model.add(Activation('softmax'))
    
    # initiate RMSprop optimizer
    opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
    
    # Let's train the model using RMSprop
    model.compile(loss='categorical_crossentropy',
                  optimizer=opt,
                  metrics=['accuracy'])
    
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255
    
    if not data_augmentation:
        print('Not using data augmentation.')
        model.fit(x_train, y_train,
                  batch_size=batch_size,
                  epochs=epochs,
                  validation_data=(x_test, y_test),
                  shuffle=True)
    else:
        print('Using real-time data augmentation.')
        # This will do preprocessing and realtime data augmentation:
        datagen = ImageDataGenerator(
            featurewise_center=False,  # set input mean to 0 over the dataset
            samplewise_center=False,  # set each sample mean to 0
            featurewise_std_normalization=False,  # divide inputs by std of the dataset
            samplewise_std_normalization=False,  # divide each input by its std
            zca_whitening=False,  # apply ZCA whitening
            rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)
            width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)
            height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)
            horizontal_flip=True,  # randomly flip images
            vertical_flip=False)  # randomly flip images
    
        # Compute quantities required for feature-wise normalization
        # (std, mean, and principal components if ZCA whitening is applied).
        datagen.fit(x_train)
    
        # Fit the model on the batches generated by datagen.flow().
        print(x_train.shape[0] // batch_size)
        model.fit_generator(datagen.flow(x_train, y_train,
                                         batch_size=batch_size),
                            steps_per_epoch=x_train.shape[0] // batch_size,
                            epochs=epochs,
                            validation_data=(x_test, y_test),
                            workers=4)
    
    # Save model and weights
    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    model_path = os.path.join(save_dir, model_name)
    model.save(model_path)
    print('Saved trained model at %s ' % model_path)
    
    # Score trained model.
    scores = model.evaluate(x_test, y_test, verbose=1)
    print('Test loss:', scores[0])
    print('Test accuracy:', scores[1])
    
    
    • model里面的demo:加载pre-trained模型
    • 修改了一个bug: #include_top=include_top
      require_flatten=include_top
    # -*- coding: utf-8 -*-
    '''VGG16 model for Keras.
    # Reference:
    - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
    '''
    from __future__ import print_function
    
    import numpy as np
    import warnings
    
    from keras.models import Model
    from keras.layers import Flatten
    from keras.layers import Dense
    from keras.layers import Input
    from keras.layers import Conv2D
    from keras.layers import MaxPooling2D
    from keras.layers import GlobalMaxPooling2D
    from keras.layers import GlobalAveragePooling2D
    from keras.preprocessing import image
    from keras.utils import layer_utils
    from keras.utils.data_utils import get_file
    from keras import backend as K
    from keras.applications.imagenet_utils import decode_predictions
    from keras.applications.imagenet_utils import preprocess_input
    from keras.applications.imagenet_utils import _obtain_input_shape
    from keras.engine.topology import get_source_inputs
    
    
    WEIGHTS_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels.h5'
    WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5'
    
    
    def VGG16(include_top=True, weights='imagenet',
              input_tensor=None, input_shape=None,
              pooling=None,
              classes=1000):
        """Instantiates the VGG16 architecture.
        Optionally loads weights pre-trained
        on ImageNet. Note that when using TensorFlow,
        for best performance you should set
        `image_data_format="channels_last"` in your Keras config
        at ~/.keras/keras.json.
        The model and the weights are compatible with both
        TensorFlow and Theano. The data format
        convention used by the model is the one
        specified in your Keras config file.
        # Arguments
            include_top: whether to include the 3 fully-connected
                layers at the top of the network.
            weights: one of `None` (random initialization)
                or "imagenet" (pre-training on ImageNet).
            input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
                to use as image input for the model.
            input_shape: optional shape tuple, only to be specified
                if `include_top` is False (otherwise the input shape
                has to be `(224, 224, 3)` (with `channels_last` data format)
                or `(3, 224, 244)` (with `channels_first` data format).
                It should have exactly 3 inputs channels,
                and width and height should be no smaller than 48.
                E.g. `(200, 200, 3)` would be one valid value.
            pooling: Optional pooling mode for feature extraction
                when `include_top` is `False`.
                - `None` means that the output of the model will be
                    the 4D tensor output of the
                    last convolutional layer.
                - `avg` means that global average pooling
                    will be applied to the output of the
                    last convolutional layer, and thus
                    the output of the model will be a 2D tensor.
                - `max` means that global max pooling will
                    be applied.
            classes: optional number of classes to classify images
                into, only to be specified if `include_top` is True, and
                if no `weights` argument is specified.
        # Returns
            A Keras model instance.
        # Raises
            ValueError: in case of invalid argument for `weights`,
                or invalid input shape.
        """
        if weights not in {'imagenet', None}:
            raise ValueError('The `weights` argument should be either '
                             '`None` (random initialization) or `imagenet` '
                             '(pre-training on ImageNet).')
    
        if weights == 'imagenet' and include_top and classes != 1000:
            raise ValueError('If using `weights` as imagenet with `include_top`'
                             ' as true, `classes` should be 1000')
        # Determine proper input shape
        input_shape = _obtain_input_shape(input_shape,
                                          default_size=224,
                                          min_size=48,
                                          data_format=K.image_data_format(),
                                          #include_top=include_top
                                          require_flatten=include_top
                                          )
    
        if input_tensor is None:
            img_input = Input(shape=input_shape)
        else:
            if not K.is_keras_tensor(input_tensor):
                img_input = Input(tensor=input_tensor, shape=input_shape)
            else:
                img_input = input_tensor
        # Block 1
        x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
        x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
    
        # Block 2
        x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
        x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
    
        # Block 3
        x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
        x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
        x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
    
        # Block 4
        x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
        x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
        x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
    
        # Block 5
        x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
        x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
        x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
    
        if include_top:
            # Classification block
            x = Flatten(name='flatten')(x)
            x = Dense(4096, activation='relu', name='fc1')(x)
            x = Dense(4096, activation='relu', name='fc2')(x)
            x = Dense(classes, activation='softmax', name='predictions')(x)
        else:
            if pooling == 'avg':
                x = GlobalAveragePooling2D()(x)
            elif pooling == 'max':
                x = GlobalMaxPooling2D()(x)
    
        # Ensure that the model takes into account
        # any potential predecessors of `input_tensor`.
        if input_tensor is not None:
            inputs = get_source_inputs(input_tensor)
        else:
            inputs = img_input
        # Create model.
        model = Model(inputs, x, name='vgg16')
    
        # load weights
        if weights == 'imagenet':
            # if include_top:
            #     weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels.h5',
            #                             WEIGHTS_PATH,
            #                             cache_subdir='models')
            # else:
            #     weights_path = get_file('vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5',
            #                             WEIGHTS_PATH_NO_TOP,
            #                             cache_subdir='models')
            weights_path='vgg16_weights_tf_dim_ordering_tf_kernels.h5'
            model.load_weights(weights_path)
            if K.backend() == 'theano':
                layer_utils.convert_all_kernels_in_model(model)
    
            if K.image_data_format() == 'channels_first':
                if include_top:
                    maxpool = model.get_layer(name='block5_pool')
                    shape = maxpool.output_shape[1:]
                    dense = model.get_layer(name='fc1')
                    layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first')
    
                if K.backend() == 'tensorflow':
                    warnings.warn('You are using the TensorFlow backend, yet you '
                                  'are using the Theano '
                                  'image data format convention '
                                  '(`image_data_format="channels_first"`). '
                                  'For best performance, set '
                                  '`image_data_format="channels_last"` in '
                                  'your Keras config '
                                  'at ~/.keras/keras.json.')
        return model
    
    
    if __name__ == '__main__':
        model = VGG16(include_top=True, weights='imagenet')
    
        img_path = 'C:\Users\Administrator\Desktop\pic2.png'
        img = image.load_img(img_path, target_size=(224, 224))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        print('Input image shape:', x.shape)
    
        preds = model.predict(x)
    print('Predicted:', decode_predictions(preds))
    
  • 相关阅读:
    [LC] 347. Top K Frequent Elements
    [LC] 659. Split Array into Consecutive Subsequences
    [LC] 430. Flatten a Multilevel Doubly Linked List
    [LC] 271. Encode and Decode Strings
    [LC] 373. Find K Pairs with Smallest Sums
    [LC] 1048. Longest String Chain
    [LC] 297. Serialize and Deserialize Binary Tree
    ubuntu 创建 PyCharm 桌面快捷方式 (或者叫 启动器 )
    scala private 和 private[this] 的区别
    %s %r 区别 转
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/7693720.html
Copyright © 2011-2022 走看看