zoukankan      html  css  js  c++  java
  • UVA 11464

    D

    Even Parity

    Input: Standard Input

    Output: Standard Output

    We have a grid of size N x N. Each cell of the grid initially contains a zero(0) or a one(1). 
    The parity of a cell is the number of 1s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right).

    Suppose we have a grid of size 4 x 4: 

    1

    0

    1

    0

    The parity of each cell would be

    1

    3

    1

    2

    1

    1

    1

    1

    2

    3

    3

    1

    0

    1

    0

    0

    2

    1

    2

    1

    0

    0

    0

    0

    0

    1

    0

    0

    For this problem, you have to change some of the 0s to 1s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.

     
    Input

    The first line of input is an integer T (T<30) that indicates the number of test cases. Each case starts with a positive integer N(1≤N≤15). Each of the next N lines contain N integers (0/1) each. The integers are separated by a single space character.

    Output

    For each case, output the case number followed by the minimum number of transformations required. If it's impossible to achieve the desired result, then output -1 instead.

    Sample Input                             Output for Sample Input

    3
    3
    0 0 0
    0 0 0
    0 0 0
    3
    0 0 0
    1 0 0
    0 0 0
    3
    1 1 1
    1 1 1
    0 0 0
     

    Case 1: 0 
    Case 2: 3 
    Case 3: -1


    题意:给定n*n矩阵,可以把0变成1,求最少变幻次数使得每个位置的上下左右之和为偶数。

    思路:n为15,第一行状态最多2^15种,然后由前一行可以推出后一行,如此一来,时间复杂度为O(2^n) * (n^2).

    代码:

    #include <stdio.h>
    #include <string.h>
    #define min(a,b) (a)<(b)?(a):(b)
    #define INF 0x3f3f3f3f
    const int d[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    const int N = 15;
    int t, n, map[N][N], save[N][N];
    
    void init() {
        scanf("%d", &n);
        for (int i = 0; i < n; i ++)
    	for (int j = 0; j < n; j ++) {
    	    scanf("%d", &map[i][j]);
    	}
    }
    
    int Sum(int i, int j) {
        int sum = 0;
        for (int k = 0; k < 4; k ++) {
    	int xx = i + d[k][0];
    	int yy = j + d[k][1];
    	if (xx >= 0 && xx < n && yy >= 0 && yy < n) {
    	    sum += save[xx][yy];    
    	}
        }
        return sum;
    }
    
    int cal(int state) {
        int count = 0;
        memset(save, 0, sizeof(save));
        for (int i = 0; i < n; i ++)
    	for (int j = 0; j < n; j ++)
    	    save[i][j] = map[i][j];
        for (int i = n - 1; i >= 0; i --)
    	if (state >= (1<<i)) {
    	    if (!save[0][n - 1 - i])
    		count ++;
    	    save[0][n - 1 - i] = 1;
    	    state -= (1<<i);
    	}
        for (int i = 0; i < n - 1; i ++) {
    	for (int j = 0; j < n; j ++) {
    	    if (Sum(i, j) % 2) {
    		if (save[i + 1][j])
    		    return count = INF;
    		save[i + 1][j] = 1;
    		count ++;
    	    }
    	}
        }
        for (int j = 0; j < n; j ++)
    	if (Sum(n - 1, j) % 2) {
    	    count = INF;
    	    break;
    	}
        return count;
    }
    
    int judge(int state) {
        for (int i = 0; i < n; i ++)
    	if (map[0][i] == 1 && (state&(1<<i) == 0))
    	    return false;
        return true;
    }
    
    void solve() {
        int m = 1<<n, ans = INF;
        for (int i = 0; i < m; i ++) {
    	if (judge(i)) {
    	    ans = min(ans, cal(i));
    	}
        }
        if (ans == INF)
    	printf("-1
    ");
        else
    	printf("%d
    ", ans);
    }
    
    int main() {
        int cas = 0;
        scanf("%d", &t);
        while (t--) {
    	init();
    	printf("Case %d: ", ++cas);
    	solve();
        }
        return 0;
    }


  • 相关阅读:
    linux下mysql区分大小写的内容
    jar包 pom
    项目的考虑
    webservice
    MySQL外键设置中的的 Cascade、NO ACTION、Restrict、SET NULL
    JVM参数最佳实践:元空间的初始大小和最大大小
    JVM问题排查工具:Serviceability-Agent介绍
    Spring Boot 2.x基础教程:构建RESTful API与单元测试
    彻底搞懂JVM类加载器:基本概念
    如何解决90%的问题?10位阿里大牛公布方法
  • 原文地址:https://www.cnblogs.com/riasky/p/3469153.html
Copyright © 2011-2022 走看看