zoukankan      html  css  js  c++  java
  • [BZOJ3456]城市规划

    题链

    sol:  Fn=Wn(n1)!×i=1nFi(i1)!Wni(ni)!Fn=Wn−(n−1)!×∑i=1nFi(i−1)!∗Wn−i(n−i)

     我们可以分治FFT

    #pragma GCC optimize("-O3")
    #include<bits/stdc++.h>
    #define mo 1004535809
    #define LL long long
    #define N 270301
    using namespace std;
    int D[N],L,m,n;
    LL gg,aa[2007],ni[2007],g[N],nig[N],f[N],x[N],y[N],z[N],wn,w,X,Y,NI,b[N],a[N],nia[N];
    inline LL qsm(LL x,LL y) {
        static LL anw;
        for (anw=1;y;y>>=1,x=x*x%mo) if (y&1) anw=anw*x%mo; 
        return anw;
    }
    inline void Mo(LL &x) {
        if (x<0) x=x%mo+mo; else if (x>=mo) x%=mo; 
    }
    inline void FNT(LL* a,int n,int y){
        for (int i=0;i<n;i++) {
            D[i]=(D[i>>1]>>1)|((i&1)<<(L-1));
            if (D[i]>i) swap(a[i],a[D[i]]);
        }
        for (int i=1;i<n;i<<=1) {
            wn=y?g[i]:nig[i];
            for (int j=0,w=1;j<n;j+=i<<1,w=1) 
                for (int k=j;k<j+i;k++,w=w*wn%mo) {
                    X=a[k]; Y=w*a[k+i]%mo;
                    a[k]=(X+Y)%mo;a[k+i]=(X-Y+mo)%mo;
            }
        }
      NI=ni[L]; if (!y) for (int i=0;i<n;i++) (a[i]*=NI)%=mo;
    }
    void FFT(int n){
        for(m=1,L=1;m<=n;m<<=1,L++); m<<=1;
        FNT(x,m,1); FNT(y,m,1);
        for (int i=0;i<m;i++) z[i]=(x[i]*y[i])%mo;
        FNT(z,m,0);
    }
    #define Mid (l+r>>1)
    #define max(a,b) ((a)>(b)?(a):(b))
    void cqh(int l,int r){
        if (l==r) {f[l]=(b[l]+mo-(a[l-1]*f[l])); Mo(f[l]); return;}
        cqh(l,Mid);
        int cnt=0;
        for (int i=0;i<r-l;i++) x[cnt++]=(b[i+1]*nia[i+1])%mo;
        for (int i=Mid-l;~i;i--) y[i]=(f[l+i]*nia[l+i-1])%mo;
        FFT(max(r-Mid,Mid-l+1));
        for (int i=Mid+1;i<=r;i++) f[i]+=z[i-l-1],Mo(f[i]);
        memset(x,0,gg*(m+1)),memset(y,0,gg*(m+1)),memset(z,0,gg*(m+1));
        cqh(Mid+1,r);
    }
    signed main () {
        gg=sizeof gg;
      freopen("bzoj_3456.in","r",stdin);
      freopen("bzoj_3456.out","w",stdout);
        cin>>n; nia[0]=a[0]=ni[0]=aa[0]=1;
        for (int i=1;i<=n;i++) a[i]=a[i-1]*i%mo; 
        nia[n]=qsm(a[n],mo-2);for (int i=n;i;i--) nia[i-1]=nia[i]*i%mo;
        for (int i=1;i<=n;i++) g[i]=qsm(3,(mo-1)/i/2),nig[i]=qsm(g[i],mo-2);
        for (int i=0;i<=n;i++) b[i]=qsm(2,1ll*i*(i-1)/2);
        for (int i=1;i<=1000;i++) aa[i]=aa[i-1]*2%mo;
        ni[1000]=qsm(aa[1000],mo-2);
        for (int i=1000;i;i--) ni[i-1]=(ni[i]<<1)%mo;
        cqh(1,n);
        cout<<f[n]; return 0;
    }

     我们还可以 多项式求逆。

    #pragma GCC optimize("-O2")
    #include<bits/stdc++.h>
    #define LL long long
    #define mo 1004535809
    #define N 300005
    //#define int LL
    using namespace std;
    LL jc[N],ny[N],b[N],c[N],ni_b[N],tmp[N];
    int rev[N],n,m,L;
    inline LL qsm(LL x,LL y=mo-2){
        static LL anw;
        for (anw=1;y;y>>=1,x=x*x%mo) if (y&1) anw=anw*x%mo;
        return anw;
    }
    void NTT(LL *a,int x,int n,int L){
        for (int i=0;i<n;i++) {
            rev[i]=(rev[i>>1]>>1)|((i&1)<<L-1);
            if (i<rev[i]) swap(a[i],a[rev[i]]);
        }
        LL X,Y;
        for (int i=1;i<n;i<<=1) {
            LL wn=qsm(3,(mo-1)/i/2);
            if (!(~x)) wn=qsm(wn);
            for (int j=0;j<n;j+=i<<1)  {
                LL w=1;
                for (int k=0;k<i;k++,w=w*wn%mo) {
                    X=a[j+k]; Y=w*a[j+k+i]%mo;
                    a[j+k]=(X+Y)%mo; a[j+k+i]=((X-Y)%mo+mo)%mo;
                } 
            }
        }
        if (!(~x)) {
            LL wc=qsm(n);
            for (int i=0;i<n;i++) a[i]=a[i]*wc%mo; }
    }
    void get(LL* a,LL* b,int n,int L) {
        if (n==1) {
            b[0]=qsm(a[0]); return;
        }
        get(a,b,n>>1,L-1);
        memcpy(tmp,a,sizeof (a[0])*n);
        memset(tmp+n,0,sizeof (a[0])*n);
        NTT(tmp,1,n<<1,L+1); NTT(b,1,n<<1,L+1);
        for (int i=(n<<1)-1;~i;--i)
          b[i]=(2+mo-tmp[i]*b[i]%mo)%mo*b[i]%mo;
        NTT(b,-1,n<<1,L+1);
        memset(b+n,0,sizeof (b[0])*n);
    }
    signed main () {
    //    freopen("a.in","r",stdin);
        scanf("%d",&n);
        jc[0]=ny[0]=1;
        for (int i=1;i<=n;i++) jc[i]=jc[i-1]*i%mo,ny[i]=qsm(jc[i]);
        for (int i=0;i<=n;i++) b[i]=qsm(2,(LL)i*(i-1)/2)*ny[i]%mo;
        for (int i=1;i<=n;i++) c[i]=qsm(2,(LL)i*(i-1)/2)*ny[i-1]%mo;
        for (m=1;m<=n;m<<=1) L++;
        get(b,ni_b,m,L);
        NTT(c,1,m<<1,L+1); NTT(ni_b,1,m<<1,L+1);
        for (int i=(m<<1)-1;~i;i--) c[i]=c[i]*ni_b[i]%mo;
        NTT(c,-1,m<<1,L+1);
        printf("%lld
    ",(LL)c[n]*jc[n-1]%mo);
        return 0;
    }
  • 相关阅读:
    结合php ob函数理解缓冲机制
    php中的require-once
    PHP面试题基础问题
    Jquery显示与隐藏input默认值的实现代码
    win7下cmd常用命令
    采用cocos2d-x lua 的listview 实现pageview的翻页效果之上下翻页效果
    采用cocos2d-x lua 制作数字滚动效果样例
    luac++
    lua相关笔记
    cornerstone知识点
  • 原文地址:https://www.cnblogs.com/rrsb/p/8551117.html
Copyright © 2011-2022 走看看