sol: Fn=Wn−(n−1)!×∑i=1nFi(i−1)!∗Wn−i(n−i)!Fn=Wn−(n−1)!×∑i=1nFi(i−1)!∗Wn−i(n−i)
我们可以分治FFT
#pragma GCC optimize("-O3") #include<bits/stdc++.h> #define mo 1004535809 #define LL long long #define N 270301 using namespace std; int D[N],L,m,n; LL gg,aa[2007],ni[2007],g[N],nig[N],f[N],x[N],y[N],z[N],wn,w,X,Y,NI,b[N],a[N],nia[N]; inline LL qsm(LL x,LL y) { static LL anw; for (anw=1;y;y>>=1,x=x*x%mo) if (y&1) anw=anw*x%mo; return anw; } inline void Mo(LL &x) { if (x<0) x=x%mo+mo; else if (x>=mo) x%=mo; } inline void FNT(LL* a,int n,int y){ for (int i=0;i<n;i++) { D[i]=(D[i>>1]>>1)|((i&1)<<(L-1)); if (D[i]>i) swap(a[i],a[D[i]]); } for (int i=1;i<n;i<<=1) { wn=y?g[i]:nig[i]; for (int j=0,w=1;j<n;j+=i<<1,w=1) for (int k=j;k<j+i;k++,w=w*wn%mo) { X=a[k]; Y=w*a[k+i]%mo; a[k]=(X+Y)%mo;a[k+i]=(X-Y+mo)%mo; } } NI=ni[L]; if (!y) for (int i=0;i<n;i++) (a[i]*=NI)%=mo; } void FFT(int n){ for(m=1,L=1;m<=n;m<<=1,L++); m<<=1; FNT(x,m,1); FNT(y,m,1); for (int i=0;i<m;i++) z[i]=(x[i]*y[i])%mo; FNT(z,m,0); } #define Mid (l+r>>1) #define max(a,b) ((a)>(b)?(a):(b)) void cqh(int l,int r){ if (l==r) {f[l]=(b[l]+mo-(a[l-1]*f[l])); Mo(f[l]); return;} cqh(l,Mid); int cnt=0; for (int i=0;i<r-l;i++) x[cnt++]=(b[i+1]*nia[i+1])%mo; for (int i=Mid-l;~i;i--) y[i]=(f[l+i]*nia[l+i-1])%mo; FFT(max(r-Mid,Mid-l+1)); for (int i=Mid+1;i<=r;i++) f[i]+=z[i-l-1],Mo(f[i]); memset(x,0,gg*(m+1)),memset(y,0,gg*(m+1)),memset(z,0,gg*(m+1)); cqh(Mid+1,r); } signed main () { gg=sizeof gg; freopen("bzoj_3456.in","r",stdin); freopen("bzoj_3456.out","w",stdout); cin>>n; nia[0]=a[0]=ni[0]=aa[0]=1; for (int i=1;i<=n;i++) a[i]=a[i-1]*i%mo; nia[n]=qsm(a[n],mo-2);for (int i=n;i;i--) nia[i-1]=nia[i]*i%mo; for (int i=1;i<=n;i++) g[i]=qsm(3,(mo-1)/i/2),nig[i]=qsm(g[i],mo-2); for (int i=0;i<=n;i++) b[i]=qsm(2,1ll*i*(i-1)/2); for (int i=1;i<=1000;i++) aa[i]=aa[i-1]*2%mo; ni[1000]=qsm(aa[1000],mo-2); for (int i=1000;i;i--) ni[i-1]=(ni[i]<<1)%mo; cqh(1,n); cout<<f[n]; return 0; }
我们还可以 多项式求逆。
#pragma GCC optimize("-O2") #include<bits/stdc++.h> #define LL long long #define mo 1004535809 #define N 300005 //#define int LL using namespace std; LL jc[N],ny[N],b[N],c[N],ni_b[N],tmp[N]; int rev[N],n,m,L; inline LL qsm(LL x,LL y=mo-2){ static LL anw; for (anw=1;y;y>>=1,x=x*x%mo) if (y&1) anw=anw*x%mo; return anw; } void NTT(LL *a,int x,int n,int L){ for (int i=0;i<n;i++) { rev[i]=(rev[i>>1]>>1)|((i&1)<<L-1); if (i<rev[i]) swap(a[i],a[rev[i]]); } LL X,Y; for (int i=1;i<n;i<<=1) { LL wn=qsm(3,(mo-1)/i/2); if (!(~x)) wn=qsm(wn); for (int j=0;j<n;j+=i<<1) { LL w=1; for (int k=0;k<i;k++,w=w*wn%mo) { X=a[j+k]; Y=w*a[j+k+i]%mo; a[j+k]=(X+Y)%mo; a[j+k+i]=((X-Y)%mo+mo)%mo; } } } if (!(~x)) { LL wc=qsm(n); for (int i=0;i<n;i++) a[i]=a[i]*wc%mo; } } void get(LL* a,LL* b,int n,int L) { if (n==1) { b[0]=qsm(a[0]); return; } get(a,b,n>>1,L-1); memcpy(tmp,a,sizeof (a[0])*n); memset(tmp+n,0,sizeof (a[0])*n); NTT(tmp,1,n<<1,L+1); NTT(b,1,n<<1,L+1); for (int i=(n<<1)-1;~i;--i) b[i]=(2+mo-tmp[i]*b[i]%mo)%mo*b[i]%mo; NTT(b,-1,n<<1,L+1); memset(b+n,0,sizeof (b[0])*n); } signed main () { // freopen("a.in","r",stdin); scanf("%d",&n); jc[0]=ny[0]=1; for (int i=1;i<=n;i++) jc[i]=jc[i-1]*i%mo,ny[i]=qsm(jc[i]); for (int i=0;i<=n;i++) b[i]=qsm(2,(LL)i*(i-1)/2)*ny[i]%mo; for (int i=1;i<=n;i++) c[i]=qsm(2,(LL)i*(i-1)/2)*ny[i-1]%mo; for (m=1;m<=n;m<<=1) L++; get(b,ni_b,m,L); NTT(c,1,m<<1,L+1); NTT(ni_b,1,m<<1,L+1); for (int i=(m<<1)-1;~i;i--) c[i]=c[i]*ni_b[i]%mo; NTT(c,-1,m<<1,L+1); printf("%lld ",(LL)c[n]*jc[n-1]%mo); return 0; }