zoukankan      html  css  js  c++  java
  • 网站行为跟踪 Website Activity Tracking Log Aggregation 日志聚合 In comparison to log-centric systems like Scribe or Flume

    网站行为跟踪 Website Activity Tracking 

    访客信息处理

    Log Aggregation   日志聚合

    Apache Kafka http://kafka.apache.org/uses

     In comparison to log-centric systems like Scribe or Flume    Scribe or Flume 是以日志处理为中心 

    Use cases

    Here is a description of a few of the popular use cases for Apache Kafka®. For an overview of a number of these areas in action, see this blog post.

    Messaging

    Kafka works well as a replacement for a more traditional message broker. Message brokers are used for a variety of reasons (to decouple processing from data producers, to buffer unprocessed messages, etc). In comparison to most messaging systems Kafka has better throughput, built-in partitioning, replication, and fault-tolerance which makes it a good solution for large scale message processing applications.

    In our experience messaging uses are often comparatively low-throughput, but may require low end-to-end latency and often depend on the strong durability guarantees Kafka provides.

    In this domain Kafka is comparable to traditional messaging systems such as ActiveMQ or RabbitMQ.

    Website Activity Tracking

    The original use case for Kafka was to be able to rebuild a user activity tracking pipeline as a set of real-time publish-subscribe feeds. This means site activity (page views, searches, or other actions users may take) is published to central topics with one topic per activity type. These feeds are available for subscription for a range of use cases including real-time processing, real-time monitoring, and loading into Hadoop or offline data warehousing systems for offline processing and reporting.

    Activity tracking is often very high volume as many activity messages are generated for each user page view.

    Metrics

    Kafka is often used for operational monitoring data. This involves aggregating statistics from distributed applications to produce centralized feeds of operational data.

    Log Aggregation

    Many people use Kafka as a replacement for a log aggregation solution. Log aggregation typically collects physical log files off servers and puts them in a central place (a file server or HDFS perhaps) for processing. Kafka abstracts away the details of files and gives a cleaner abstraction of log or event data as a stream of messages. This allows for lower-latency processing and easier support for multiple data sources and distributed data consumption. In comparison to log-centric systems like Scribe or Flume, Kafka offers equally good performance, stronger durability guarantees due to replication, and much lower end-to-end latency.

    Stream Processing

    Many users of Kafka process data in processing pipelines consisting of multiple stages, where raw input data is consumed from Kafka topics and then aggregated, enriched, or otherwise transformed into new topics for further consumption or follow-up processing. For example, a processing pipeline for recommending news articles might crawl article content from RSS feeds and publish it to an "articles" topic; further processing might normalize or deduplicate this content and published the cleansed article content to a new topic; a final processing stage might attempt to recommend this content to users. Such processing pipelines create graphs of real-time data flows based on the individual topics. Starting in 0.10.0.0, a light-weight but powerful stream processing library called Kafka Streams is available in Apache Kafka to perform such data processing as described above. Apart from Kafka Streams, alternative open source stream processing tools include Apache Storm and Apache Samza.

    Event Sourcing

    Event sourcing is a style of application design where state changes are logged as a time-ordered sequence of records. Kafka's support for very large stored log data makes it an excellent backend for an application built in this style.

    Commit Log

    Kafka can serve as a kind of external commit-log for a distributed system. The log helps replicate data between nodes and acts as a re-syncing mechanism for failed nodes to restore their data. The log compaction feature in Kafka helps support this usage. In this usage Kafka is similar to Apache BookKeeper project.

  • 相关阅读:
    HashMap 统计一个字符串中每个单词出现的次数
    iOS .a静态库的制作及使用
    iOS framework静态库中使用xib和图片资源详解
    iOS 工程套子工程,主工程和framework工程或.a library静态库工程联调
    iOS 最新framework和.a静态库制作及使用全解(含工程套工程,多工程联调)
    iOS9新特性 3DTouch 开发教程全解(含源码)
    iOS GCD NSOperation NSThread等多线程各种举例详解
    Mac Beyond Compare 永久试用
    cocoapods 常见问题
    iOS 常用工具库LFKit功能介绍
  • 原文地址:https://www.cnblogs.com/rsapaper/p/9873388.html
Copyright © 2011-2022 走看看