zoukankan      html  css  js  c++  java
  • POJ-1061 青蛙的约会 (扩展欧几里得)

    【题目描述】

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
    我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

    输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

    输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

    Sample Input:

    1 2 3 4 5

    Sample Output:

    4

    【分析】
    这个题能看出是exgcd 然而就是不会写。然后瞎搞了好久qwq
    题意很显然,x+(mt)%L == y+(nt)%L,让你求最小的t。那么这个式子就可以整理成 t(m-n)+kL == y-x。
    令a=m-n,b=L,c=y-x,X=t,Y=k,上式可以整理为aX+bY=c的形式,故可用exgcd求解。

    【代码】

    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    
    using namespace std;
    
    typedef long long LL;
    
    void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
    {
        if (!b)
        {
            d = a;
            x = 1;
            y = 0;
            return;
        }
    
        exgcd(b, a%b, d, y, x);
        y -= a/b * x;
    }
    
    
    int main()
    {
        LL X, Y, m, n, L;
        while(scanf("%lld%lld%lld%lld%lld", &X, &Y, &m, &n, &L) != EOF)
        {
            LL a = m-n, b = L, c = Y-X, d, x, y;
            if (a < 0)
            {
                a = -a;
                c = -c;
            }
            exgcd(a, b, d, x, y);
    
            if (c%d != 0) //无解
            {
                printf("Impossible
    ");
                continue;
            }
    
            x *= c/d;
    
            int t = L / d;
            printf("%lld
    ", (x%t+t)%t); //求出最小非负解
        }
    }
  • 相关阅读:
    问题:贴友关于CSS效果的实现
    建站小记
    PHP基本语法的小结
    算法的想法
    算法导论
    算法真的复杂
    快速排序-移动单边指针
    如何实现算法
    c++ constructor, copy constructor, operator =
    阶段性总结
  • 原文地址:https://www.cnblogs.com/ruthank/p/8874853.html
Copyright © 2011-2022 走看看