zoukankan      html  css  js  c++  java
  • hadoop2.6集群环境搭建

    一、环境说明

    1、机器:一台物理机 和一台虚拟机

    2、Linux版本:[Spark@S1PA11 ~]$ cat /etc/issue
    Red Hat Enterprise Linux Server release 5.4 (Tikanga)

    3、JDK: [spark@S1PA11 ~]$ Java -version
    Java version "1.6.0_27"
    Java(TM) SE Runtime Environment (build 1.6.0_27-b07)
    Java HotSpot(TM) 64-Bit Server VM (build 20.2-b06, mixed mode)

    4、集群节点:两个 S1PA11(Master),S1PA222(Slave)

    二、准备工作

    1、安装Java jdk前一篇文章撰写了:http://blog.csdn.net/stark_summer/article/details/42391531

    2、ssh免密码验证 :http://blog.csdn.net/stark_summer/article/details/42393053

    3、下载Hadoop版本:http://mirror.bit.edu.cn/apache/hadoop/common/

    三、安装Hadoop

    这是下载后的hadoop-2.6.0.tar.gz压缩包,   

    1、解压 tar -xzvf hadoop-2.6.0.tar.gz 

    2、move到指定目录下:[spark@S1PA11 software]$ mv hadoop-2.6.0 ~/opt/ 

    3、进入hadoop目前  [spark@S1PA11 opt]$ cd hadoop-2.6.0/
    [spark@S1PA11 hadoop-2.6.0]$ ls
    bin  dfs  etc  include  input  lib  libexec  LICENSE.txt  logs  NOTICE.txt  README.txt  sbin  share  tmp

     配置之前,先在本地文件系统创建以下文件夹:~/hadoop/tmp、~/dfs/data、~/dfs/name。 主要涉及的配置文件有7个:都在/hadoop/etc/hadoop文件夹下,可以用gedit命令对其进行编辑。

    ~/hadoop/etc/hadoop/hadoop-env.sh
    ~/hadoop/etc/hadoop/yarn-env.sh
    ~/hadoop/etc/hadoop/slaves
    ~/hadoop/etc/hadoop/core-site.xml
    ~/hadoop/etc/hadoop/hdfs-site.xml
    ~/hadoop/etc/hadoop/mapred-site.xml
    ~/hadoop/etc/hadoop/yarn-site.xml

    4、进去hadoop配置文件目录

    [spark@S1PA11 hadoop-2.6.0]$ cd etc/hadoop/
    [spark@S1PA11 hadoop]$ ls
    capacity-scheduler.xml  hadoop-env.sh               httpfs-env.sh            kms-env.sh            mapred-env.sh               ssl-client.xml.example
    configuration.xsl       hadoop-metrics2.properties  httpfs-log4j.properties  kms-log4j.properties  mapred-queues.xml.template  ssl-server.xml.example
    Container-executor.cfg  hadoop-metrics.properties   httpfs-signature.secret  kms-site.xml          mapred-site.xml             yarn-env.cmd
    core-site.xml           hadoop-policy.xml           httpfs-site.xml          log4j.properties      mapred-site.xml.template    yarn-env.sh
    hadoop-env.cmd          hdfs-site.xml               kms-acls.xml             mapred-env.cmd        slaves                      yarn-site.xml

    4.1、配置 hadoop-env.sh文件-->修改JAVA_HOME

    # The java implementation to use.
    export JAVA_HOME=/home/spark/opt/java/jdk1.6.0_37

    4.2、配置 yarn-env.sh 文件-->>修改JAVA_HOME

    # some Java parameters

     export JAVA_HOME=/home/spark/opt/java/jdk1.6.0_37

    4.3、配置slaves文件-->>增加slave节点 

     S1PA222

    4.4、配置 core-site.xml文件-->>增加hadoop核心配置(hdfs文件端口是9000、file:/home/spark/opt/hadoop-2.6.0/tmp、)

    <configuration>
     <property>
      <name>fs.defaultFS</name>
      <value>hdfs://S1PA11:9000</value>
     </property>

     <property>
      <name>io.file.buffer.size</name>
      <value>131072</value>
     </property>
     <property>
      <name>hadoop.tmp.dir</name>
      <value>file:/home/spark/opt/hadoop-2.6.0/tmp</value>
      <description>Abasefor other temporary directories.</description>
     </property>
     <property>
      <name>hadoop.proxyuser.spark.hosts</name>
      <value>*</value>
     </property>
    <property>
      <name>hadoop.proxyuser.spark.groups</name>
      <value>*</value>
     </property>
    </configuration>

    4.5、配置  hdfs-site.xml 文件-->>增加hdfs配置信息(namenode、datanode端口和目录位置)

    <configuration>
     <property>
      <name>dfs.namenode.secondary.http-address</name>
      <value>S1PA11:9001</value>
     </property>

      <property>
       <name>dfs.namenode.name.dir</name>
       <value>file:/home/spark/opt/hadoop-2.6.0/dfs/name</value>
     </property>

     <property>
      <name>dfs.datanode.data.dir</name>
      <value>file:/home/spark/opt/hadoop-2.6.0/dfs/data</value>
      </property>

     <property>
      <name>dfs.replication</name>
      <value>3</value>
     </property>

     <property>
      <name>dfs.webhdfs.enabled</name>
      <value>true</value>
     </property>

    </configuration>

    4.6、配置  mapred-site.xml 文件-->>增加mapreduce配置(使用yarn框架、jobhistory使用地址以及web地址)

    <configuration>
      <property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
     </property>
     <property>
      <name>mapreduce.jobhistory.address</name>
      <value>S1PA11:10020</value>
     </property>
     <property>
      <name>mapreduce.jobhistory.webapp.address</name>
      <value>S1PA11:19888</value>
     </property>
    </configuration>

    4.7、配置   yarn-site.xml  文件-->>增加yarn功能

    <configuration>
      <property>
       <name>yarn.nodemanager.aux-services</name>
       <value>mapreduce_shuffle</value>
      </property>
      <property>
       <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
       <value>org.apache.hadoop.mapred.ShuffleHandler</value>
      </property>
      <property>
       <name>yarn.resourcemanager.address</name>
       <value>S1PA11:8032</value>
      </property>
      <property>
       <name>yarn.resourcemanager.scheduler.address</name>
       <value>S1PA11:8030</value>
      </property>
      <property>
       <name>yarn.resourcemanager.resource-tracker.address</name>
       <value>S1PA11:8035</value>
      </property>
      <property>
       <name>yarn.resourcemanager.admin.address</name>
       <value>S1PA11:8033</value>
      </property>
      <property>
       <name>yarn.resourcemanager.webapp.address</name>
       <value>S1PA11:8088</value>
      </property>

    </configuration>

    5、将配置好的hadoop文件copy到另一台slave机器上

    [spark@S1PA11 opt]$ scp -r hadoop-2.6.0/ spark@10.126.34.43:~/opt/

    四、验证

    1、格式化namenode:

    [spark@S1PA11 opt]$ cd hadoop-2.6.0/
    [spark@S1PA11 hadoop-2.6.0]$ ls
    bin  dfs  etc  include  input  lib  libexec  LICENSE.txt  logs  NOTICE.txt  README.txt  sbin  share  tmp
    [spark@S1PA11 hadoop-2.6.0]$ ./bin/hdfs namenode -format

    [spark@S1PA222 .ssh]$ cd ~/opt/hadoop-2.6.0
    [spark@S1PA222 hadoop-2.6.0]$ ./bin/hdfs  namenode -format

    2、启动hdfs:

    [spark@S1PA11 hadoop-2.6.0]$ ./sbin/start-dfs.sh 
    15/01/05 16:41:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Starting namenodes on [S1PA11]
    S1PA11: starting namenode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-namenode-S1PA11.out
    S1PA222: starting datanode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-datanode-S1PA222.out
    Starting secondary namenodes [S1PA11]
    S1PA11: starting secondarynamenode, logging to /home/spark/opt/hadoop-2.6.0/logs/hadoop-spark-secondarynamenode-S1PA11.out
    15/01/05 16:41:21 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    [spark@S1PA11 hadoop-2.6.0]$ jps
    22230 Master
    30889 Jps
    22478 Worker
    30498 NameNode
    30733 SecondaryNameNode
    19781 ResourceManager

    3、停止hdfs:

    [spark@S1PA11 hadoop-2.6.0]$./sbin/stop-dfs.sh 
    15/01/05 16:40:28 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Stopping namenodes on [S1PA11]
    S1PA11: stopping namenode
    S1PA222: stopping datanode
    Stopping secondary namenodes [S1PA11]
    S1PA11: stopping secondarynamenode
    15/01/05 16:40:48 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    [spark@S1PA11 hadoop-2.6.0]$ jps
    30336 Jps
    22230 Master
    22478 Worker
    19781 ResourceManager

    4、启动yarn:

    [spark@S1PA11 hadoop-2.6.0]$./sbin/start-yarn.sh 
    starting yarn daemons
    starting resourcemanager, logging to /home/spark/opt/hadoop-2.6.0/logs/yarn-spark-resourcemanager-S1PA11.out
    S1PA222: starting nodemanager, logging to /home/spark/opt/hadoop-2.6.0/logs/yarn-spark-nodemanager-S1PA222.out
    [spark@S1PA11 hadoop-2.6.0]$ jps
    31233 ResourceManager
    22230 Master
    22478 Worker
    30498 NameNode
    30733 SecondaryNameNode
    31503 Jps

    5、停止yarn:

    [spark@S1PA11 hadoop-2.6.0]$ ./sbin/stop-yarn.sh 
    stopping yarn daemons
    stopping resourcemanager
    S1PA222: stopping nodemanager
    no proxyserver to stop
    [spark@S1PA11 hadoop-2.6.0]$ jps
    31167 Jps
    22230 Master
    22478 Worker
    30498 NameNode
    30733 SecondaryNameNode

    6、查看集群状态:

    [spark@S1PA11 hadoop-2.6.0]$ ./bin/hdfs dfsadmin -report
    15/01/05 16:44:50 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    Configured Capacity: 52101857280 (48.52 GB)
    Present Capacity: 45749510144 (42.61 GB)
    DFS Remaining: 45748686848 (42.61 GB)
    DFS Used: 823296 (804 KB)
    DFS Used%: 0.00%
    Under replicated blocks: 10
    Blocks with corrupt replicas: 0
    Missing blocks: 0


    -------------------------------------------------
    Live datanodes (1):


    Name: 10.126.45.56:50010 (S1PA222)
    Hostname: S1PA209
    Decommission Status : Normal
    Configured Capacity: 52101857280 (48.52 GB)
    DFS Used: 823296 (804 KB)
    Non DFS Used: 6352347136 (5.92 GB)
    DFS Remaining: 45748686848 (42.61 GB)
    DFS Used%: 0.00%
    DFS Remaining%: 87.81%
    Configured Cache Capacity: 0 (0 B)
    Cache Used: 0 (0 B)
    Cache Remaining: 0 (0 B)
    Cache Used%: 100.00%
    Cache Remaining%: 0.00%
    Xceivers: 1
    Last contact: Mon Jan 05 16:44:50 CST 2015

    7、查看hdfs:http://10.58.44.47:50070/

  • 相关阅读:
    Meteor + node-imap(nodejs) + mailparser(nodejs) 实现完整收发邮件
    详解log4j2(上)
    循序渐进之Spring AOP(6)
    循序渐进之Spring AOP(5)
    循序渐进之Spring AOP(3)
    循序渐进之Spring AOP(4)
    循序渐进之Spring AOP(2)
    循序渐进之Spring AOP(1)
    通俗的解释JAVA wait/notify机制
    开发高性能JAVA应用程序基础(内存篇)
  • 原文地址:https://www.cnblogs.com/scote/p/5969618.html
Copyright © 2011-2022 走看看