rm(list=ls()) library(GSVA) library(GSEABase) library(GSVAdata) library(msigdbr) library(org.Hs.eg.db) library(Seurat) library(Rtsne) setwd("/heartdata8t_A/zhangpeng/Final.results/Final_Project_III/GSVA") ### Merging the cannicalc2BroadSets data(c2BroadSets) canonicalC2BroadSets <- c2BroadSets[c(grep("^KEGG", names(c2BroadSets)), grep("^REACTOME", names(c2BroadSets)), grep("^BIOCARTA", names(c2BroadSets)))] ## Adding Hallmark genesets m_df = msigdbr(species = "Homo sapiens", category = "H") gset.all <- unique(m_df$gs_name) for(geneset_i in 1:length(gset.all)){ names_geneset_i <- gset.all[geneset_i] entrez_gene_geneset_i <- as.character(unique(m_df$entrez_gene[which(m_df$gs_name == gset.all[geneset_i])])) HallMarks <- GeneSet(entrez_gene_geneset_i, geneIdType=EntrezIdentifier(), collectionType=BroadCollection(category="c2"), setName=names_geneset_i) canonicalC2BroadSets <- GeneSetCollection(c(canonicalC2BroadSets, HallMarks)) } ## Adding human-curated genesets (GEO/Cancer) load("GC.signature.Rdata") GC.signature <- as.character(mapIds(org.Hs.eg.db, GC.signature, 'ENTREZID', 'SYMBOL')) GC.signature <- GeneSet(GC.signature, geneIdType=EntrezIdentifier(), collectionType=BroadCollection(category="c2"), setName="GC.signature") canonicalC2BroadSets <- GeneSetCollection(c(canonicalC2BroadSets, GC.signature)) load("GC.signature.literature.Rdata") GC.signature.literature <- as.character(mapIds(org.Hs.eg.db, GC.signature.literature, 'ENTREZID', 'SYMBOL')) GC.signature.literature <- GeneSet(GC.signature.literature, geneIdType=EntrezIdentifier(), collectionType=BroadCollection(category="c2"), setName="GC.signature.literature") canonicalC2BroadSets <- GeneSetCollection(c(canonicalC2BroadSets, GC.signature.literature)) # Computing the GSVA score based the above curated datasets load("subset.epithelial.cells.gc.signature.Rdata") processed.data <- as.matrix(epithelial.cells.re.subset.GC.signature@assays$SCT@counts) rownames.processed.data <- rownames(processed.data) entrez.rownames.processed.data <- as.character(mapIds(org.Hs.eg.db, rownames.processed.data , 'ENTREZID', 'SYMBOL')) invalid.index <- which(is.na(entrez.rownames.processed.data)) processed.data <- processed.data[-invalid.index,] rownames(processed.data) <- entrez.rownames.processed.data[-invalid.index] esmicro.processed <- gsva(processed.data, canonicalC2BroadSets, min.sz=5, max.sz=500, mx.diff=TRUE, verbose=FALSE, parallel.sz=1, kcdf = "Poisson") ## Results # library(pheatmap) # esmicro.processed <- esmicro.processed[grep("KEGG",rownames(esmicro.processed)),] # pheatmap(esmicro.processed) save(esmicro.processed,file = "esmicro.processed.Rdata") tsne <- Rtsne(esmicro.processed,dims = 2) plot(tsne$Y) epi<-epithelial.cells.re@meta.data bb<-epi$SCT_snn_res.1[which(epi$SCT_snn_res.1 ==5)] bb<-epi[which(epi[,12]==5),] cc<-epi[which(epi[,12]==30),] aa<-rbind(bb,cc) g1.index<-rownames(aa) pro<- esmicro.processed g1<-pro[ , which(colnames(pro) %in% g1.index )] g2<-pro[ , -which(colnames(pro) %in% g1.index )] heatmap(pro) pathway_name = rownames(g1) tm <- list('P-value' = c(), 'Pathway_name' = c()) cell.types <- unique(Idents(epithelial.cells.re)) library(pryr) #setClass("All_results", slots = list(C0_results = "data.frame")) #all_results <- new("All_results", C0_results = tm) cell.types #for(i in 1:length(cell.types)){ # print((as.numeric(cell.types[i]))) #name = paste0("tm_",as.numeric(cell.types[i])) #eval(parse( name ) )<- list('P-value' = c(), 'Pathway_name' = c()) #append(all_ans,list(name = c())) #} for(j in cell.types){ cc<-epi[which(epi[,12]==j),] index<-rownames(cc) g1<-pro[ , which(colnames(pro) %in% index )] pathway_name = rownames(g1) g2<-pro[ , -which(colnames(pro) %in% index )] tm <- list('P-value' = c(), 'Pathway_name' = c()) ## t.test for(i in 1:dim(g1)[1]){ results<- t.test(g1[i,],g2[i,])$p.value tm$`P-value`<-append(tm$`P-value`,results) tm$Pathway_name<- append(tm$Pathway_name,pathway_name[i]) } assign(paste("tm_",j,sep = ""),tm) } print(results) data.frame() p.val,pathway_name result[[celltype_i]] <- data.frame dftm<- data.frame(tm) dftm <- dftm[sort(dftm$P.value,index.return=TRUE)$ix,] down <- sample(colnames(pro),round(nrow(pro)/5)) a<-pro[,down] heatmap(a) raw.data result <- list() cell.types <- unique(Idents(epithelial.cells.re)) for(celltype_i in cell.types){ ## t.test data.frame() p.val,pathway_name result[[celltype_i]] <- data.frame }
主要部分“
1 for(j in cell.types){ 2 cc<-epi[which(epi[,12]==j),] 3 index<-rownames(cc) 4 g1<-pro[ , which(colnames(pro) %in% index )] 5 pathway_name = rownames(g1) 6 g2<-pro[ , -which(colnames(pro) %in% index )] 7 tm <- list('P-value' = c(), 'Pathway_name' = c()) 8 ## t.test 9 for(i in 1:dim(g1)[1]){ 10 results<- t.test(g1[i,],g2[i,])$p.value 11 tm$`P-value`<-append(tm$`P-value`,results) 12 tm$Pathway_name<- append(tm$Pathway_name,pathway_name[i]) 13 } 14 assign(paste("tm_",j,sep = ""),tm) 15 } 16 17 print(results) 18