coverage.py是一个用来统计python程序代码覆盖率的工具。它使用起来非常简单,并且支持最终生成界面友好的html报告。在最新版本中,还提供了分支覆盖的功能。
官方网站:
http://nedbatchelder.com/code/coverage/
win32版本下载地址:
http://pypi.python.org/pypi/coverage
或者通过pip来安装:
pip install coverage
如果安装后调用出现问题,请留意安装过程的报错信息,做对应的调整
1. run
执行代码覆盖率统计,只需要通过coverage的run参数执行被统计代码即可。
$ coverage run my_program.py arg1 arg2
跑完后,会自动生成一个覆盖率统计结果文件(data file):.coverage。如果要修改这个默认的文件名也可以,只要设置COVERAGE_FILE环境变量。
2. report
有了覆盖率统计结果文件,只需要再运行report参数,就可以在命令里看到统计的结果
$ coverage report Name Stmts Exec Cover --------------------------------------------- my_program 20 16 80% my_module 15 13 86% my_other_module 56 50 89% --------------------------------------------- TOTAL 91 79 87%
3. html
最帅最酷的功能了,直接生成html的测试报告。
$ coverage html -d covhtml
4. combine
用过代码覆盖率工具的都知道,多份结果的合并至关重要。combine这个参数我琢磨了很久,开始总是合并不成功。后来终于明白了。执行合并操作很简单,只要把需要合并的覆盖率结果数据文件放在同一个目录里,然后执行
coverage combine
即可。但是,其实对目录里的结果文件是有要求的,要求就是文件名的格式,需要合并的文件必须有同样的前缀,然后后面跟一个名称(通常是机器名),然后再跟一个数字(通常是进程ID),比如:
.coverage.CoderZh.1234
.coverage.Cnblogs.5678
为了方便执行结果的合并,我们在前面执行统计时,在run参数后面跟一个-p参数,会自动生成符合合并条件的结果文件。
$ coverage run -p my_program.py arg1 arg2
合并后,会再生成一个.coverage文件,然后再执行html查看合并后的报告吧。
其他几个erase annotate debug 参数就不介绍了。
Coverage API
除了使用命令行,还可以在python代码中直接调用coverage模块执行代码覆盖率的统计。使用方法也非常简单:
import coverage cov = coverage.coverage() cov.start() # .. run your code .. cov.stop() cov.save()
coverage的构造函数可以设置结果文件的名称等。有个函数容易弄错,就是use_cache,如果设置的use_cache(0),表示不在硬盘上读写结果文件。如果需要结果数据用来合并,一定要设置use_cache(1)。
coverage提供一些很好用的函数,如:exclude(排除统计的代码),html_report(生成html报告),report(控制台输出结果)