zoukankan      html  css  js  c++  java
  • 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 243  Solved: 167
    [Submit][Status][Discuss]

    Description

        约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K(O≤K<N)只牝牛.
        请计算一共有多少种排队的方法.所有牡牛可以看成是相同的,所有牝牛也一样.答案对5000011取模

    Input

        一行,输入两个整数N和K.

    Output

     
        一个整数,表示排队的方法数.

    Sample Input

    4 2

    Sample Output

    6
    样例说明
    6种方法分别是:牝牝牝牝,牡牝牝牝,牝牡牝牝,牝牝牡牝,牝牝牝牡,牡牝牝牡

    HINT

     

    Source

    /*
    以下牡牛为a,牝牛为b。
    学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举a为x头(x>1),然后算出对应的排列累计起来。
    对于x头a,首先我们先缩掉必要的k头牛(x-1)*k,然后这时可以特判可以先结束(因为单调的),然后在缩好后的x个点和n-x-(x-1)*k个点进行多重排列就行了。
    逆元:a^(phi(n)-1) mod n 
    */
    #include<cstdio>
    #include<iostream>
    using namespace std;
    const int mod=5000011;
    typedef long long ll;
    int n,k;ll ans;
    ll fpow(ll a,ll p){
        ll res=1;
        for(;p;p>>=1,a=a*a%mod) if(p&1) res=res*a%mod;
        return res;
    }
    ll C(ll n,ll m){
        m=min(m,n-m);ll r1=1,r2=1;
        for(ll i=n-m+1;i<=n;i++) r1=r1*i%mod;
        for(ll i=1;i<=m;i++) r2=r2*i%mod;
        return r1*fpow(r2,mod-2);
    }
    int main(){
        scanf("%d%d",&n,&k);
        for(ll i=0;i<=n;i++){
            ll t=n-(i-1)*k;
            if(t<i) break;
            ans=(ans+C(t,i))%mod;
        }
        cout<<ans;
        return 0;
    }
    /*
    DP:
    设 f[i]表示取的最后一个数是i的方案数
    则 f[i]=siama(f[j]) i-j>k
    */
    #include<cstdio>
    #define mod 5000011
    using namespace std;
    int n,k,f[(int)1e5+5];
    int main(){
        scanf("%d%d",&n,&k);
        f[0]=1;
        int sum=1,ans=1;
        for(int i=1;i<=n;i++){
             if(i>k+1) sum=(sum+f[i-k-1])%mod;
             f[i]=sum;
             ans=(ans+f[i])%mod;
        }
        printf("%d
    ",ans); 
        return 0;
    }
  • 相关阅读:
    Spring----Day03
    Spring----Day02
    python
    python
    python
    python
    python
    python
    python
    python
  • 原文地址:https://www.cnblogs.com/shenben/p/6286551.html
Copyright © 2011-2022 走看看