The Grove
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 904 | Accepted: 444 |
Description
The pasture contains a small, contiguous grove of trees that has no 'holes' in the middle of the it. Bessie wonders: how far is it to walk around that grove and get back to my starting position? She's just sure there is a way to do it by going from her start location to successive locations by walking horizontally, vertically, or diagonally and counting each move as a single step. Just looking at it, she doesn't think you could pass 'through' the grove on a tricky diagonal. Your job is to calculate the minimum number of steps she must take.
Happily, Bessie lives on a simple world where the pasture is represented by a grid with R rows and C columns (1 <= R <= 50, 1 <= C <= 50). Here's a typical example where '.' is pasture (which Bessie may traverse), 'X' is the grove of trees, '*' represents Bessie's start and end position, and '+' marks one shortest path she can walk to circumnavigate the grove (i.e., the answer):
Happily, Bessie lives on a simple world where the pasture is represented by a grid with R rows and C columns (1 <= R <= 50, 1 <= C <= 50). Here's a typical example where '.' is pasture (which Bessie may traverse), 'X' is the grove of trees, '*' represents Bessie's start and end position, and '+' marks one shortest path she can walk to circumnavigate the grove (i.e., the answer):
...+...The path shown is not the only possible shortest path; Bessie might have taken a diagonal step from her start position and achieved a similar length solution. Bessie is happy that she's starting 'outside' the grove instead of in a sort of 'harbor' that could complicate finding the best path.
..+X+..
.+XXX+.
..+XXX+
..+X..+
...+++*
Input
Line 1: Two space-separated integers: R and C
Lines 2..R+1: Line i+1 describes row i with C characters (with no spaces between them).
Lines 2..R+1: Line i+1 describes row i with C characters (with no spaces between them).
Output
Line 1: The single line contains a single integer which is the smallest number of steps required to circumnavigate the grove.
Sample Input
6 7 ....... ...X... ..XXX.. ...XXX. ...X... ......*
Sample Output
13
Source
题意:
//dp[x][y][1]表示从(x,y)到起点的距离+去的距离
一个n*m(n,m<=50)的矩阵有一片连着的树林,Bessie要从起始位置出发绕林子一圈再回来,每次只能向横着、竖着或斜着走一步。
问最少需多少步才能完成。
分析:
1.如果搜出的路径能够包围其中的一个点,那么就能包围森林,这样问题就被简化了
2.我们任选一个点作为被包围点,在搜索时利用射线法判断某这个点是否在多边形中
3.判断点在多边形内外最常用的方法就是射线法,即以一条射线穿过多边形次数的奇偶性来判断。
奇在偶不在。
//dp[x][y][0]表示从起点达到(x,y)的距离//dp[x][y][1]表示从(x,y)到起点的距离+去的距离
#include<cstdio> #include<cstring> #include<queue> using namespace std; const int N=105; const int dx[8]={0,0,1,-1,1,1,-1,-1}; const int dy[8]={1,-1,0,0,-1,1,-1,1}; int dp[N][N][2];char mp[N][N]; int n,m,sx,sy,gx,gy,px,py,pk,nx,ny,nk; struct node{ int x,y,k; node(int x=0,int y=0,int k=0):x(x),y(y),k(k){} }; bool ok(){ if(nx==gx&&ny<gy){ if(px<nx) return 1; } if(px==gx&&py<gy){ if(px>nx) return 1; } return 0; } void bfs(){ memset(dp,-1,sizeof dp); queue<node>q; q.push(node(sx,sy,0)); dp[sx][sy][0]=0; while(!q.empty()){ node t=q.front();q.pop(); px=t.x;py=t.y;pk=t.k; for(int i=0;i<8;i++){ nx=px+dx[i];ny=py+dy[i];nk=pk; if(nx<1||ny<1||nx>n||ny>m||mp[nx][ny]=='X') continue; if(ok()) nk^=1; if(!(~dp[nx][ny][nk])){ dp[nx][ny][nk]=dp[px][py][pk]+1; q.push(node(nx,ny,nk)); } } } printf("%d ",dp[sx][sy][1]); } int main(){ scanf("%d%d",&n,&m);bool flag=0; for(int i=1;i<=n;i++) scanf("%s",mp[i]+1); for(int i=1;i<=n;i++){ for(int j=1;j<=m;j++){ if(mp[i][j]=='*') sx=i,sy=j; if(!flag&&mp[i][j]=='X') flag=1,gx=i,gy=j; } } bfs(); return 0; }