zoukankan      html  css  js  c++  java
  • POJ3182 The Grove[射线法+分层图最短路]

    The Grove
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 904   Accepted: 444

    Description

    The pasture contains a small, contiguous grove of trees that has no 'holes' in the middle of the it. Bessie wonders: how far is it to walk around that grove and get back to my starting position? She's just sure there is a way to do it by going from her start location to successive locations by walking horizontally, vertically, or diagonally and counting each move as a single step. Just looking at it, she doesn't think you could pass 'through' the grove on a tricky diagonal. Your job is to calculate the minimum number of steps she must take. 

    Happily, Bessie lives on a simple world where the pasture is represented by a grid with R rows and C columns (1 <= R <= 50, 1 <= C <= 50). Here's a typical example where '.' is pasture (which Bessie may traverse), 'X' is the grove of trees, '*' represents Bessie's start and end position, and '+' marks one shortest path she can walk to circumnavigate the grove (i.e., the answer): 

    ...+...
    
    ..+X+..
    .+XXX+.
    ..+XXX+
    ..+X..+
    ...+++*
    The path shown is not the only possible shortest path; Bessie might have taken a diagonal step from her start position and achieved a similar length solution. Bessie is happy that she's starting 'outside' the grove instead of in a sort of 'harbor' that could complicate finding the best path.

    Input

    Line 1: Two space-separated integers: R and C 

    Lines 2..R+1: Line i+1 describes row i with C characters (with no spaces between them).

    Output

    Line 1: The single line contains a single integer which is the smallest number of steps required to circumnavigate the grove.

    Sample Input

    6 7
    .......
    ...X...
    ..XXX..
    ...XXX.
    ...X...
    ......*

    Sample Output

    13

    Source

    题意:
        一个n*m(n,m<=50)的矩阵有一片连着的树林,Bessie要从起始位置出发绕林子一圈再回来,每次只能向横着、竖着或斜着走一步。
    问最少需多少步才能完成。
    
    分析:
        1.如果搜出的路径能够包围其中的一个点,那么就能包围森林,这样问题就被简化了
        2.我们任选一个点作为被包围点,在搜索时利用射线法判断某这个点是否在多边形中
        3.判断点在多边形内外最常用的方法就是射线法,即以一条射线穿过多边形次数的奇偶性来判断。
       奇在偶不在。
    //dp[x][y][0]表示从起点达到(x,y)的距离
    //dp[x][y][1]表示从(x,y)到起点的距离+去的距离
    #include<cstdio>
    #include<cstring>
    #include<queue>
    using namespace std;
    const int N=105;
    const int dx[8]={0,0,1,-1,1,1,-1,-1};
    const int dy[8]={1,-1,0,0,-1,1,-1,1};
    int dp[N][N][2];char mp[N][N];
    int n,m,sx,sy,gx,gy,px,py,pk,nx,ny,nk;
    struct node{
        int x,y,k;
        node(int x=0,int y=0,int k=0):x(x),y(y),k(k){}
    };
    bool ok(){
        if(nx==gx&&ny<gy){
            if(px<nx) return 1;
        }
        if(px==gx&&py<gy){
            if(px>nx) return 1;
        }
        return 0;
    }
    void bfs(){
        memset(dp,-1,sizeof dp);
        queue<node>q;
        q.push(node(sx,sy,0));
        dp[sx][sy][0]=0;
        while(!q.empty()){
            node t=q.front();q.pop();
            px=t.x;py=t.y;pk=t.k;
            for(int i=0;i<8;i++){
                nx=px+dx[i];ny=py+dy[i];nk=pk;
                if(nx<1||ny<1||nx>n||ny>m||mp[nx][ny]=='X') continue;
                if(ok()) nk^=1;
                if(!(~dp[nx][ny][nk])){
                    dp[nx][ny][nk]=dp[px][py][pk]+1;
                    q.push(node(nx,ny,nk));
                }
            }
        }
        printf("%d
    ",dp[sx][sy][1]);
    }
    int main(){
        scanf("%d%d",&n,&m);bool flag=0;
        for(int i=1;i<=n;i++) scanf("%s",mp[i]+1);
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                if(mp[i][j]=='*') sx=i,sy=j;
                if(!flag&&mp[i][j]=='X') flag=1,gx=i,gy=j;
            }
        }
        bfs();
        return 0;
    }
  • 相关阅读:
    面向对象实验 ——(二)类与对象
    [LeetCode] 957. Prison Cells After N Days
    [LeetCode] 32. Longest Valid Parentheses
    [LeetCode] 120. Triangle
    [LeetCode] 441. Arranging Coins
    [LeetCode] 79. Word Search
    [LeetCode] 1143. Longest Common Subsequence
    [LeetCode] 718. Maximum Length of Repeated Subarray
    [LeetCode] 332. Reconstruct Itinerary
    [LeetCode] 279. Perfect Squares
  • 原文地址:https://www.cnblogs.com/shenben/p/6393592.html
Copyright © 2011-2022 走看看