zoukankan      html  css  js  c++  java
  • python 之I/O模型

    I/O模型:

    同步(synchronous)IO

    异步(asynchronous)IO

    阻塞(blocking)IO

    非阻塞(non-blocking)IO

    对于一个network  IO(这里以read举例)发生时涉及到两个系统对象,一个是调用这个IO的process或者thread,另一个就是系统内核kernel。当一个read操作发生时,该操作会经历两个阶段。

    1)等待数据准备(wait   data)

    2)将数据从内核拷贝到进程中(copying data)

    阻塞IO

    linux中,默认情况下所有的socket都是blocking,一个典型的读操作大概如下图:

              当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
    所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

    二. non-blocking IO(非阻塞IO)

      linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

    从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

     注意:

          在网络IO时候,非阻塞IO也会进行recvform系统调用,检查数据是否准备好,与阻塞IO不一样,”非阻塞将大的整片时间的阻塞分成N多的小的阻塞, 所以进程不断地有机会 ‘被’ CPU光顾”。即每次recvform系统调用之间,cpu的权限还在进程手中,这段时间是可以做其他事情的,

          也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。 

    复制代码
    import time
    import socket
    sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    sk.setsockopt
    sk.bind(('127.0.0.1',6667))
    sk.listen(5)
    sk.setblocking(False)
    while True:
        try:
            print ('waiting client connection .......')
            connection,address = sk.accept()   # 进程主动轮询
            print("+++",address)
            client_messge = connection.recv(1024)
            print(str(client_messge,'utf8'))
            connection.close()
        except Exception as e:
            print (e)
            time.sleep(4)
    
    #############################client
    
    import time
    import socket
    sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    
    while True:
        sk.connect(('127.0.0.1',6667))
        print("hello")
        sk.sendall(bytes("hello","utf8"))
        time.sleep(2)
        break
    复制代码
    View Code

    优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。

    缺点:任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。

    三. IO multiplexing(IO多路复用)

       IO multiplexing这个词可能有点陌生,但是如果我说select,epoll,大概就都能明白了。有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图: 

     

      当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
      这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)
      在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

    注意1:select函数返回结果中如果有文件可读了,那么进程就可以通过调用accept()或recv()来让kernel将位于内核中准备到的数据copy到用户区。

    注意2: select的优势在于可以处理多个连接,不适用于单个连接

    #***********************server.py
    import socket
    import select
    sk=socket.socket()
    sk.bind(("127.0.0.1",8801))
    sk.listen(5)
    inputs=[sk,]
    while True:
        r,w,e=select.select(inputs,[],[],5)
        print(len(r))
    
        for obj in r:
            if obj==sk:
                conn,add=obj.accept()
                print(conn)
                inputs.append(conn)
            else:
                data_byte=obj.recv(1024)
                print(str(data_byte,'utf8'))
                inp=input('回答%s号客户>>>'%inputs.index(obj))
                obj.sendall(bytes(inp,'utf8'))
    
        print('>>',r)
    
    #***********************client.py
    
    import socket
    sk=socket.socket()
    sk.connect(('127.0.0.1',8801))
    
    while True:
        inp=input(">>>>")
        sk.sendall(bytes(inp,"utf8"))
        data=sk.recv(1024)
        print(str(data,'utf8'))
    View Code
    import selectors
    import socket
    
    sel = selectors.DefaultSelector()   #会根据操作系统自动选择一个IO多用复用模型
    
    def accept(sock, mask):
        conn, addr = sock.accept()  # Should be ready
        print('accepted', conn, 'from', addr)
        conn.setblocking(False)
        sel.register(conn, selectors.EVENT_READ, read)
    
    def read(conn, mask):
        data = conn.recv(1000)  # Should be ready
        if data:
            print('echoing', repr(data), 'to', conn)
            conn.send(data)  # Hope it won't block
        else:
            print('closing', conn)
            sel.unregister(conn)
            conn.close()
    
    sock = socket.socket()
    sock.bind(('127.0.0.1', 8080))
    sock.listen(100)
    sock.setblocking(False)     #设置非阻塞
    
    #注册  把sock描述符和accept函数绑定
    sel.register(sock, selectors.EVENT_READ, accept)
    
    while True:
        events = sel.select()
        for key, mask in events:
            callback = key.data
            callback(key.fileobj, mask)
    selectors

    四 .Asynchronous I/O(异步IO)

      异步最大特点:全程无阻塞

      linux下的asynchronous IO其实用得很少。先看一下它的流程:

      用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

  • 相关阅读:
    spring 自定义事件发布及监听(简单实例)
    解析spring中的BeanFactory(看完会有收获)
    如何提高锁的性能
    spring MVC模式拦截所有入口方法的入参出参打印
    java基于feemarker 生成word文档(超级简单)
    数据库事务特性汇总
    如何让window.open()以post请求方式调用(巧妙解法)
    a标签添加背景图片的解决办法
    深入理解Django Admin的list_display, list_filter和raw_id_fields,filter_horizontal选项
    django配置log日志
  • 原文地址:https://www.cnblogs.com/shengzhongqiu/p/7470082.html
Copyright © 2011-2022 走看看