zoukankan      html  css  js  c++  java
  • TF——线性回归

    注释很清楚:

     1 import tensorflow as tf
     2 import os
     3 import numpy as np
     4 import matplotlib.pyplot as plt
     5 os.environ["CUDA_VISIBLE_DEVICES"]="0"
     6 learning_rate=0.01
     7 training_epochs=1000
     8 display_step=50
     9 if __name__ =='__main__':
    10    train_X = np.asarray(
    11        [3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    12    train_Y = np.asarray(
    13        [1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    14    n_sample=train_X.shape[0]#维度——几行
    15    print(n_sample)
    16    '''变量'''
    17    X=tf.placeholder("float")
    18    Y=tf.placeholder("float")
    19    '''模型'''
    20    W=tf.Variable(np.random.randn(),name="weight")#标准正态分布
    21    b = tf.Variable(np.random.randn(), name="bias")
    22    '''线性回归模型
    23     pred=x*k+b
    24    '''
    25    mul=tf.multiply(X,W)
    26    pred=tf.add(mul,b)
    27 
    28    '''标准方差:
    29    z=(Y-y)^2+...../n
    30    '''
    31    print(2*n_sample)
    32    cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_sample)
    33 
    34    '''梯度下降法 去最小值,获得最有解'''
    35    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    36    init = tf.global_variables_initializer()
    37    with tf.Session() as sess:
    38        sess.run(init)
    39        '''训练模型'''
    40        for epoch in range(training_epochs):
    41            for(x,y) in zip(train_X,train_Y):
    42                sess.run(optimizer,feed_dict={X:x,Y:y})
    43 
    44                if(epoch+1)%display_step==0:
    45                    c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
    46                    print("训练次数:", '%04d' % (epoch + 1),
    47                          "标准差=", "{:.9f}".format(c),
    48                          "斜率=", sess.run(W),
    49                          "截距=",sess.run(b))
    50        print("PPPPPPPPPPPPPPPPPPPPPPPPP")
    51        training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
    52        print("标准差=", training_cost, "斜率=", sess.run(W), "截距=", sess.run(b))
    53        plt.plot(train_X,train_Y,'ro',label="DATA")
    54        plt.plot(train_X, sess.run(W)*train_X+sess.run(b), label="Line",color="blue")
    55        plt.legend()
    56        plt.show()
  • 相关阅读:
    linux的vim按了ctrl+s之后假死的解决办法
    linux下的终端模拟器urxvt的配置
    vim下正则表达式的非贪婪匹配
    linux中的一个看图的软件
    解决windows的控制台显示utf8乱码的问题
    [PHP][位转换积累]之异或运算的简单加密应用
    [PHP][REDIS]phpredis 'RedisException' with message 'read error on connection'
    [PHP][位转换积累]之与运算截取二进制流的值
    [PHP][位转换积累]之pack和unpack
    [正则表达式]PCRE反向分组引用
  • 原文地址:https://www.cnblogs.com/smartisn/p/12573661.html
Copyright © 2011-2022 走看看