zoukankan      html  css  js  c++  java
  • SPOJ 2713 Can you answer these queries IV

    SPOJ_2713

        查询区间和很容易用线段树实现,而开方操作乍一看是没法用下传lazy标记的办法实现的,但仔细想一下,实际上每个数最多被开方的次数也是很有限的,只要最后开成1或者0,那么之后都不会再变了。

        因此我们可以用一个finish标记表示当前区间内是否还有数在开方后发生变化,如果有的话finish为0,否则为1,每次开方都沿finish为0的区间更新到底,由于被开方次数有限,所以整体的复杂度还是可以承受的。

    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    #define MAXD 100010
    long long sum[4 * MAXD], a[MAXD];
    int N, finish[4 * MAXD];
    void Swap(int &x, int &y)
    {
        int t;
        t = x, x = y, y = t;
    }
    void update(int cur)
    {
        int ls = cur << 1, rs = cur << 1 | 1;
        sum[cur] = sum[ls] + sum[rs];
        if(finish[ls] && finish[rs])
            finish[cur] = 1;
        else
            finish[cur] = 0;
    }
    void build(int cur, int x, int y)
    {
        int mid = (x + y) >> 1, ls = cur << 1, rs = cur << 1 | 1;
        if(x == y)
        {
            sum[cur] = a[x];
            if(a[x] == 0 || a[x] == 1)
                finish[cur] = 1;
            else
                finish[cur] = 0;
            return ;
        }
        build(ls, x, mid);
        build(rs, mid + 1, y);
        update(cur);
    }
    void init()
    {
        int i;
        for(i = 1; i <= N; i ++)
            scanf("%lld", &a[i]);
        build(1, 1, N);
    }
    void dfs(int cur, int x, int y)
    {
        int mid = (x + y) >> 1, ls = cur << 1, rs = cur << 1 | 1;
        if(x == y)
        {
            sum[cur] = (long long)sqrt(sum[cur] + 0.5);
            if(sum[cur] == 0 || sum[cur] == 1)
                finish[cur] = 1;
            return ;
        }
        if(!finish[ls])
            dfs(ls, x, mid);
        if(!finish[rs])
            dfs(rs, mid + 1, y);
        update(cur);
    }
    void refresh(int cur, int x, int y, int s, int t)
    {
        int mid = (x + y) >> 1, ls = cur << 1, rs = cur << 1 | 1;
        if(x >= s && y <= t)
        {
            if(!finish[cur])
                dfs(cur, x, y);
            return ;
        }
        if(mid >= s)
            refresh(ls, x, mid, s, t);
        if(mid + 1 <= t)
            refresh(rs, mid + 1, y, s, t);
        update(cur);
    }
    long long Search(int cur, int x, int y, int s, int t)
    {
        int mid = (x + y) >> 1, ls = cur << 1, rs = cur << 1 | 1;
        if(x >= s && y <= t)
            return sum[cur];
        if(mid >= t)
            return Search(ls, x, mid, s, t);
        else if(mid + 1 <= s)
            return Search(rs, mid + 1, y, s, t);
        else
            return Search(ls, x, mid, s, t) + Search(rs, mid + 1, y, s, t);
    }
    void solve()
    {
        int i, j, k, q, x, y;
        scanf("%d", &q);
        for(i = 0; i < q; i ++)
        {
            scanf("%d%d%d", &k, &x, &y);
            if(x > y)
                Swap(x, y);
            if(k == 0)
                refresh(1, 1, N, x, y);
            else
                printf("%lld\n", Search(1, 1, N, x, y));
        }
    }
    int main()
    {
        int t = 0;
        while(scanf("%d", &N) == 1)
        {
            init();
            printf("Case #%d:\n", ++ t);
            solve();
            printf("\n");
        }
        return 0;
    }
  • 相关阅读:
    Linux软件安装中RPM与YUM 区别和联系
    Linux分区类型EXT2、EXT3、EXT4详解
    【转】SQLServer数据库还原数据库后因孤立用户问题导致无法登陆的处理
    CVE-2018-8045 Joomla内核SQL注入漏洞
    SQL注入漏洞靶场-sqli-labs学习[1-10]
    SQL注入漏洞
    文件包含漏洞
    CSRF的攻击与防御
    XSS漏洞的基本原理
    Linux高性能服务器编程(一):TCP/IP协议族
  • 原文地址:https://www.cnblogs.com/staginner/p/2526382.html
Copyright © 2011-2022 走看看