zoukankan      html  css  js  c++  java
  • [Swift]LeetCode747. 至少是其他数字两倍的最大数 | Largest Number At Least Twice of Others

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
    ➤微信公众号:山青咏芝(shanqingyongzhi)
    ➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/
    ➤GitHub地址:https://github.com/strengthen/LeetCode
    ➤原文地址: https://www.cnblogs.com/strengthen/p/10525612.html 
    ➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
    ➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

    In a given integer array nums, there is always exactly one largest element.

    Find whether the largest element in the array is at least twice as much as every other number in the array.

    If it is, return the index of the largest element, otherwise return -1.

    Example 1:

    Input: nums = [3, 6, 1, 0]
    Output: 1
    Explanation: 6 is the largest integer, and for every other number in the array x,
    6 is more than twice as big as x.  The index of value 6 is 1, so we return 1. 

    Example 2:

    Input: nums = [1, 2, 3, 4]
    Output: -1
    Explanation: 4 isn't at least as big as twice the value of 3, so we return -1. 

    Note:

    1. nums will have a length in the range [1, 50].
    2. Every nums[i] will be an integer in the range [0, 99].

    在一个给定的数组nums中,总是存在一个最大元素 。

    查找数组中的最大元素是否至少是数组中每个其他数字的两倍。

    如果是,则返回最大元素的索引,否则返回-1。

    示例 1:

    输入: nums = [3, 6, 1, 0]
    输出: 1
    解释: 6是最大的整数, 对于数组中的其他整数,
    6大于数组中其他元素的两倍。6的索引是1, 所以我们返回1. 

    示例 2:

    输入: nums = [1, 2, 3, 4]
    输出: -1
    解释: 4没有超过3的两倍大, 所以我们返回 -1. 

    提示:

    1. nums 的长度范围在[1, 50].
    2. 每个 nums[i] 的整数范围在 [0, 99].

    Runtime: 12 ms
    Memory Usage: 18.7 MB
     1 class Solution {
     2     func dominantIndex(_ nums: [Int]) -> Int {
     3         var mx:Int = Int.min
     4         var mxId:Int = 0
     5         for i in 0..<nums.count
     6         {
     7             if mx < nums[i]
     8             {
     9                 mx = nums[i]
    10                 mxId = i
    11             }
    12         }
    13         for num in nums
    14         {
    15             if mx != num && mx - num < num
    16             {
    17                 return -1
    18             }
    19         }
    20         return mxId
    21     }
    22 }

    12ms

    1 class Solution {
    2     func dominantIndex(_ nums: [Int]) -> Int {
    3     let maximumNumber = nums.max()!
    4     let index = nums.firstIndex(of: maximumNumber)!
    5      let _nums = nums.filter{$0 * 2 > maximumNumber}
    6        return _nums.count > 1 ? -1 : index        
    7     }
    8 }

    16ms

     1 class Solution {
     2     func dominantIndex(_ nums: [Int]) -> Int {
     3         guard nums.count > 1 else {
     4             return 0
     5         }
     6         
     7        let ar = nums.enumerated().sorted{$0.1 > $1.1}
     8         if ar[0].1 >= 2*ar[1].1 {
     9             return ar[0].0
    10         }
    11         return -1
    12     }
    13 }

    16ms

     1 class Solution {
     2     func dominantIndex(_ nums: [Int]) -> Int {
     3         if nums.count == 1 {
     4             return 0
     5         }
     6         
     7         var index: Int = 0
     8         var maxValue: Int = 0
     9         var secondValue: Int = 0
    10     
    11         for i in 0...nums.count - 1{            
    12             if nums[i] > maxValue{
    13                 secondValue = maxValue
    14                 maxValue = nums[i]
    15                 index = i
    16             }else if nums[i] > secondValue{
    17                 secondValue = nums[i]
    18             }           
    19         }
    20         
    21         return maxValue >= (secondValue * 2) ? index : -1
    22     }
    23 }

    20ms

     1 class Solution {
     2     
     3     var greatestNumber = (index: -1, value: -1)
     4     var secondGreatestNumber = (index: -1, value: -1)
     5     var currentNumber = (index: -1, value: -1)
     6     
     7     func dominantIndex(_ nums: [Int]) -> Int {
     8 
     9         findTwoGreatestNumbers(in: nums)
    10         if greatestNumber.value >= secondGreatestNumber.value * 2 {
    11             return greatestNumber.index
    12         } else {
    13             return -1
    14         }
    15     }
    16     
    17     private func findTwoGreatestNumbers(in nums: [Int]) {
    18         for (index, value) in nums.enumerated() {
    19             currentNumber = (index,value)
    20             if currentNumber.value > greatestNumber.value {
    21                 secondGreatestNumber = greatestNumber
    22                 greatestNumber = currentNumber
    23             } else if currentNumber.value > secondGreatestNumber.value {
    24                 secondGreatestNumber = currentNumber
    25             }
    26         }
    27     }
    28 }

    24ms

     1 class Solution {
     2     func dominantIndex(_ nums: [Int]) -> Int {
     3         guard !nums.isEmpty else {
     4             return -1
     5         }
     6         
     7         var maxIndex = 0
     8         for index in 1..<nums.count {
     9             let num = nums[index]
    10             if num > nums[maxIndex] {
    11                 maxIndex = index
    12             }
    13         }
    14         
    15         let maxNum = nums[maxIndex]
    16         for num in nums where num != 0 && num != maxNum {
    17             if maxNum / num < 2 {
    18                 return -1
    19             }
    20         }
    21         
    22         return maxIndex
    23     }
    24 }

    28ms

    1 class Solution {
    2     func dominantIndex(_ nums: [Int]) -> Int {
    3     guard let largestNumber = nums.sorted(by: >).first else { return -1 }
    4     let dominateNums = nums.filter({ $0 != largestNumber && largestNumber < ($0 * 2) })
    5     return dominateNums.isEmpty ? nums.index(of: largestNumber)! : -1
    6    }
    7 }
  • 相关阅读:
    在 Anaconda下解决国内安装tensorflow等下载慢和中断,出错,异常问题的一点思路
    关于指针和结构体的一点教训
    ARM cortexM4中断优先级的一点理解。
    ubuntu16下的/etc/resolv.conf重置的解决方案
    linux安装dpkg安装缺少依赖项的解决
    莲藕的简单凉菜制作总结
    单片机一种简便的printf调试方案。
    usart下位机输出使用printf的格式化技巧
    关于xp操作系统下使用VC6++编写的上位机软件在win10中运行的问题
    百度面试两板斧:手写算法问基础
  • 原文地址:https://www.cnblogs.com/strengthen/p/10525612.html
Copyright © 2011-2022 走看看