题目链接
http://codeforces.com/contest/482/problem/E
题解
T2智商题T3大LCT题,我一个也不会= =
CF的标算好像是分块?反正现在LCT都普及了就用LCT好了。
首先算期望推个式子,易得答案为(sum_u a[u](sz[u]^2-sum_{vin son[u]} sz[v]^2)) ((sz)为子树大小),令求和的那个东西等于(f[u])
并且如果往一个(u)里新添一个儿子(v),增添后的子树大小是(sz[v]), 那么新增的答案是(2a[u]sz[v](sz[u]-sz[v]))
然后我们要支持换父亲,动态维护这个东西
后面的就是莽上一个LCT。
这个只能详见代码,解释一下代码里变量的含义
对于一个Splay结构体(u):
(ans): 这个点Splay的子树中所有点的(f)之和。Splay的根的(ans)就是要求的答案。
(sz01): 这个点所有虚子树的大小之和加上本身的(1)。((sz)是原树中子树大小)
(sz02): 这个点本身所有虚子树的大小平方和,不包括本身。
(ans0): 这个点本身所有虚儿子的(ans)之和。
(sz11): 这个点所有实儿子和虚儿子的大小之和。
(sum): 这个点及其所有实儿子(v)的(sz01[v] imes a[v])之和。
这些变量看起来有些匪夷所思,那么我们看下怎么维护。
首先,所有对虚儿子求和的变量(也就是名字里带0的三个)都在access时处理,pushup时无需处理。
现在考虑pushup那个函数,前两行处理的是(sz11)和(sum), 这个根据定义求就行,也没有什么好说的。
后四行是重点——(ans)的更新。
我们把(ans[u])分了四部分统计。(选两个点(x)和(y)求(a[lca(x,y)])之和)
第一部分: 两个点都选在(u)的祖先(splay左子树内),或都选在splay右子树内,或都选在(u)的同一棵虚子树内。
spl[u].ans = spl[ls].ans+spl[u].ans0+spl[rs].ans;
第二部分: 两个点选在(u)的两棵不同虚子树内。
spl[u].ans += (spl[u].sz01*spl[u].sz01-spl[u].sz02)*a[u];
第三部分: 两个点之一选在(u)的虚子树内,另一个点选在(u)的splay右子树内。这样LCA一定是(u).
spl[u].ans += 2ll*spl[u].sz01*spl[rs].sz11*a[u];
第四部分: 两个点之一选在(u)的祖先(splay左子树)或其虚子树内,另一个选在(u)的整个splay子树及子树内所有点的虚子树去掉(u)上方(splay左子树内及其虚子树)的部分,也就是(u)及其下方(splay右子树内)所有点及其虚子树内。
spl[u].ans += 2ll*spl[ls].sum*(spl[u].sz11-spl[ls].sz11);
于是就做完了。(第四部分确实有点复杂)
最后膜拜一发考场切此题的新初三巨佬
zjr nb!
代码
#include<cstdio>
#include<cstdlib>
#include<iostream>
#define llong long long
using namespace std;
void read(int &x)
{
int f=1;x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
x*=f;
}
const int N = 1e5;
struct SplayNode
{
int son[2],fa; llong sz01,sz11,sz02,sum,ans0,ans;
} spl[N+3];
int fa[N+3];
llong a[N+3];
int n,q;
bool isroot(int u) {return spl[spl[u].fa].son[0]!=u && spl[spl[u].fa].son[1]!=u;}
void pushup(int u)
{
int ls = spl[u].son[0],rs = spl[u].son[1];
spl[u].sz11 = spl[ls].sz11+spl[u].sz01+spl[rs].sz11;
spl[u].sum = spl[ls].sum+spl[rs].sum+spl[u].sz01*a[u];
spl[u].ans = spl[ls].ans+spl[u].ans0+spl[rs].ans;
spl[u].ans += (spl[u].sz01*spl[u].sz01-spl[u].sz02)*a[u];
spl[u].ans += 2ll*spl[u].sz01*spl[rs].sz11*a[u];
spl[u].ans += 2ll*spl[ls].sum*(spl[u].sz11-spl[ls].sz11);
}
void rotate(int u)
{
int x = spl[u].fa,y = spl[x].fa;
spl[u].fa = y;
if(!isroot(x)) {spl[y].son[x==spl[y].son[1]] = u;}
int dir = u==spl[x].son[0];
spl[x].son[dir^1] = spl[u].son[dir];
if(spl[u].son[dir]) {spl[spl[u].son[dir]].fa = x;}
spl[u].son[dir] = x; spl[x].fa = u;
pushup(x); pushup(u);
}
void splaynode(int u)
{
while(!isroot(u))
{
int x = spl[u].fa,y = spl[x].fa;
if(!isroot(x)) {x==spl[y].son[1] ^ u==spl[x].son[1] ? rotate(u) : rotate(x);}
rotate(u);
}
pushup(u);
}
void access(int u)
{
for(int i=0; u; i=u,u=spl[u].fa)
{
splaynode(u);
int ls = spl[u].son[0],rs = spl[u].son[1];
spl[u].sz01 += spl[rs].sz11;
spl[u].sz02 += spl[rs].sz11*spl[rs].sz11;
spl[u].ans0 += spl[rs].ans; //not ans0
rs = spl[u].son[1] = i;
spl[u].sz01 -= spl[rs].sz11;
spl[u].sz02 -= spl[rs].sz11*spl[rs].sz11;
spl[u].ans0 -= spl[rs].ans;
pushup(u);
}
}
void link(int u,int v)
{
access(v); splaynode(v);
access(u); splaynode(u); //in order to pushup
spl[u].sz01 += spl[v].sz11;
spl[u].sz02 += spl[v].sz11*spl[v].sz11;
spl[u].ans0 += spl[v].ans;
spl[v].fa = u;
pushup(u);
}
void cut(int u,int v)
{
access(u); splaynode(u);
splaynode(v); //v is in the virtual subtree of u
spl[u].sz01 -= spl[v].sz11;
spl[u].sz02 -= spl[v].sz11*spl[v].sz11;
spl[u].ans0 -= spl[v].ans;
spl[v].fa = 0;
pushup(u);
}
bool isanc(int u,int v) //if u is ancestor of v
{
access(v); splaynode(v);
splaynode(u);
if(!isroot(v)) return true;
return false;
}
void printans(llong x)
{
double ans = (double)x/(double)n/(double)n;
printf("%.12lf
",ans);
}
int main()
{
scanf("%d",&n);
for(int i=2; i<=n; i++) scanf("%d",&fa[i]);
for(int i=1; i<=n; i++) scanf("%I64d",&a[i]);
for(int i=1; i<=n; i++) spl[i].sz11 = spl[i].sz01 = 1ll,spl[i].ans = spl[i].sum = a[i];
for(int i=2; i<=n; i++)
{
link(fa[i],i);
}
access(1); splaynode(1);
printans(spl[1].ans);
scanf("%d",&q);
for(int i=1; i<=q; i++)
{
char opt[5]; scanf("%s",opt+1);
if(opt[1]=='P')
{
int x,y; scanf("%d%d",&x,&y);
if(isanc(x,y)) {swap(x,y);}
cut(fa[x],x);
fa[x] = y;
link(fa[x],x);
access(1); splaynode(1);
printans(spl[1].ans);
}
else if(opt[1]=='V')
{
int x; llong y; scanf("%d%I64d",&x,&y);
access(x); splaynode(x);
a[x] = y;
pushup(x);
printans(spl[x].ans);
}
}
return 0;
}