zoukankan      html  css  js  c++  java
  • POJ

    动态规划:多阶段决策问题,每步求解的问题是后面阶段问题求解的子问题,每步决策将依赖于以前步骤的决策结果。(可以用于组合优化问题)

    优化原则:一个最优决策序列的任何子序列本身一定是相当于子序列初始和结束状态的最优决策序列。

    只有满足优化原则的问题才可以利用动态算法进行求解,因为只有全局最优解法等于其每个子问题的最优才可以分阶段进行求解。

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

              7
    

    3 8

    8 1 0

    2 7 4 4

    4 5 2 6 5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample: 

              7
    
    *
    3 8
    *
    8 1 0
    *
    2 7 4 4
    *
    4 5 2 6 5
    The highest score is achievable by traversing the cows as shown above.
    这道题的思路解法是:记录n-1层的每个元素值到n层的最大距离,再计算n-2层到n层=n-2到n-1+n-1到n,然后n-3到n=n-3到n-2+n-2到n;一直如此循环直到第一层
     

    #include<iostream>
    #include<cstring>
    using namespace std;
    const int maxn=355;
    int main()
    {
    int sum=0,a[maxn][maxn],b[maxn][maxn],c[maxn][maxn]; //a记录每个位置牛的编号 ,b[i][j]记录从(i,j)位置往下走的最大编号和但不包括a[i][j]本身
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=i;j++)
    scanf("%d",&a[i][j]); //存储每头牛的编号
    for(int i=n-1;i>=1;i--)
    {
    for(int j=1;j<=i;j++)
    {
    if(a[i+1][j]+b[i+1][j]>=a[i+1][j+1]+b[i+1][j+1]) b[i][j]=b[i+1][j]+a[i+1][j],c[i][j]=0; //c记录走的路径
    else b[i][j]=b[i+1][j+1]+a[i+1][j+1],c[i][j]=1;
    }
    }
    /*cout<<a[1][1]<<endl; //注释掉的内容所走的路径
    for(int i=1,j=1;i<n;i++)
    {
    cout<<a[i+1][j+c[i][j]]<<endl;
    j=j+c[i][j];

    }*/
    cout<<a[1][1]+b[1][1]<<endl;
    return 0;
    }


    作者:孙建钊
    出处:http://www.cnblogs.com/sunjianzhao/
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    数据处理之PostgreSQL过程语言学习
    Thinkphp中的assign() 和 display()
    JS截取与分割字符串常用技巧总结
    三种JS截取字符串方法
    十大经典排序算法的JS版
    js时间与毫秒互相转换
    javascript--清除表单缓存
    JS join()和split()方法、reverse() 方法、sort()方法
    JS数组去重的几种常见方法
    CSS样式大全
  • 原文地址:https://www.cnblogs.com/sunjianzhao/p/11367759.html
Copyright © 2011-2022 走看看