zoukankan      html  css  js  c++  java
  • spark小例子

     

    import org.apache.spark.SparkConf
    import org.apache.spark.SparkContext
    
    object MaxTemperaturer {
      def main(args: Array[String]): Unit = {
        var conf = new SparkConf().setAppName("MaxGroup").setMaster("local")
        var sc = new SparkContext(conf)
        sc.textFile("/Users/lihu/Desktop/crawle/maxforgroup.txt").map(_.split("	")).filter(_(1) != "0").map(rec => (rec(0).toInt, rec(1).toInt)).reduceByKey(Math.max(_,_)).saveAsTextFile("/Users/lihu/Desktop/crawle/MaxTemperatureLogsss")
      }
    }
    // 出现次数最多的8个单词
    import
    org.apache.spark.SparkConf import org.apache.spark.SparkContext object TopSearchKeyWords { def main(args: Array[String]): Unit = { var conf = new SparkConf().setAppName("TopSearchKeyWords").setMaster("local") var sc = new SparkContext(conf) var src = sc.textFile("/Users/lihu/Desktop/crawle/wahah.txt") var countData = src.map(line => (line.toLowerCase(),1)).reduceByKey(_+_) var sortedData = countData.map{case (k,v) => (v,k)}.sortByKey(false) var topData = sortedData.take(8).map{case (v, k) => (k, v)}.foreach(println _) } }
    // 统计单词个数,不区分大小写
    import org.apache.spark.SparkConf
    import org.apache.spark.SparkContext
    
    object TopSearchKeyWords {
      def main(args: Array[String]): Unit = {
        var conf = new SparkConf().setAppName("TopSearchKeyWords").setMaster("local")
        var sc = new SparkContext(conf)
        var src = sc.textFile("/Users/lihu/Desktop/crawle/wahah.txt")
        var countData = src.map(line => (line.toLowerCase(),1)).countByKey().foreach(println _)

          var countData1 = src.map(line => (line.toLowerCase(),1)).reduceByKey(_+_).collect().foreach(println _)

    
      }
    }
    // 统计男生女生的人数,最高个子和最低个子等
    import
    org.apache.spark.SparkConf import org.apache.spark.SparkContext object TopPeopleSecond { def main(args: Array[String]): Unit = { val conf=new SparkConf().setAppName("TopNSecond by Scala").setMaster("local"); val sc=new SparkContext(conf); val data=sc.textFile("/Users/lihu/Desktop/crawle/xingbie.txt",1); val lines=data.map{ line => (line.split(" ")(1),line.split(" ")(2).toInt) }; val groups=lines.groupByKey(); lines.countByKey().foreach(println _) groups.map(tu=> (tu._1,tu._2.max)).foreach(println _); groups.map(tu=> (tu._1,tu._2.min)).foreach(println _); groups.map(w => (w._1, w._2.sum)).collect().foreach(println) sc.stop(); } }
  • 相关阅读:
    视觉SLAM(五)特征点法视觉里程计 后续作业
    在TUMVI数据集上测试VINS-Fusion算法
    视觉SLAM作业(四) 相机模型与非线性优化
    视觉SLAM(三)李群与李代数 后续作业
    -- Could not find the required component 'pcl_ros'. The following CMake error indicates that you either
    ZED stereolabs 配置踩过的坑
    视觉SLAM十四讲实验补充
    视觉SLAM十四讲(第二版)第十二讲笔记
    视觉SLAM十四讲(第二版)第十一讲笔记
    视觉SLAM十四讲(第二版)第十讲笔记
  • 原文地址:https://www.cnblogs.com/sunyaxue/p/6368554.html
Copyright © 2011-2022 走看看