import org.apache.spark.SparkConf import org.apache.spark.SparkContext object MaxTemperaturer { def main(args: Array[String]): Unit = { var conf = new SparkConf().setAppName("MaxGroup").setMaster("local") var sc = new SparkContext(conf) sc.textFile("/Users/lihu/Desktop/crawle/maxforgroup.txt").map(_.split(" ")).filter(_(1) != "0").map(rec => (rec(0).toInt, rec(1).toInt)).reduceByKey(Math.max(_,_)).saveAsTextFile("/Users/lihu/Desktop/crawle/MaxTemperatureLogsss") } }
// 出现次数最多的8个单词
import org.apache.spark.SparkConf import org.apache.spark.SparkContext object TopSearchKeyWords { def main(args: Array[String]): Unit = { var conf = new SparkConf().setAppName("TopSearchKeyWords").setMaster("local") var sc = new SparkContext(conf) var src = sc.textFile("/Users/lihu/Desktop/crawle/wahah.txt") var countData = src.map(line => (line.toLowerCase(),1)).reduceByKey(_+_) var sortedData = countData.map{case (k,v) => (v,k)}.sortByKey(false) var topData = sortedData.take(8).map{case (v, k) => (k, v)}.foreach(println _) } }
// 统计单词个数,不区分大小写 import org.apache.spark.SparkConf import org.apache.spark.SparkContext object TopSearchKeyWords { def main(args: Array[String]): Unit = { var conf = new SparkConf().setAppName("TopSearchKeyWords").setMaster("local") var sc = new SparkContext(conf) var src = sc.textFile("/Users/lihu/Desktop/crawle/wahah.txt") var countData = src.map(line => (line.toLowerCase(),1)).countByKey().foreach(println _)
var countData1 = src.map(line => (line.toLowerCase(),1)).reduceByKey(_+_).collect().foreach(println _)
}
}
// 统计男生女生的人数,最高个子和最低个子等
import org.apache.spark.SparkConf import org.apache.spark.SparkContext object TopPeopleSecond { def main(args: Array[String]): Unit = { val conf=new SparkConf().setAppName("TopNSecond by Scala").setMaster("local"); val sc=new SparkContext(conf); val data=sc.textFile("/Users/lihu/Desktop/crawle/xingbie.txt",1); val lines=data.map{ line => (line.split(" ")(1),line.split(" ")(2).toInt) }; val groups=lines.groupByKey(); lines.countByKey().foreach(println _) groups.map(tu=> (tu._1,tu._2.max)).foreach(println _); groups.map(tu=> (tu._1,tu._2.min)).foreach(println _); groups.map(w => (w._1, w._2.sum)).collect().foreach(println) sc.stop(); } }