Problem Description:
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input:
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output:
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input:
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output:
6
-1
KMP算法:
其核心是next数组(该数组中存放的是每个位置处的最长后缀与前缀相同的长度)。
next数组的不同值包含的意义是:
(1)next[0]= -1 意义:任何串的第一个字符的模式值规定为-1;
(2)next[i]= -1 意义:模式串T中下标为i的字符,如果与首字符相同,且i的前面的1—j个字符与开头的1—j个字符不等(或者相等但T[j]==T[i]),
如:T=”abCabCad” 则 next[6]=-1,因T[3]=T[6];
(3)next[i]=j 意义:模式串T中下标为i的字符,如果i的前面j个字符与开头的j个字符相等,且T[i] != T[j] ,
即T[0]T[1]T[2]。。。T[j-1]==T[i-j]T[i-j+1]T[i-j+2]…T[i-1]且T[i] != T[j];
(4)next[i]=0 意义:除(1)(2)(3)的其他情况。
那么next数组求解代码是:
void Start() { int i = 0, j = -1; while (i < m) { if (j == -1 || b[i] == b[j]) { ++i; ++j; if (b[i] != b[j]) next[i] = j; else next[i] = next[j]; } else j = next[j]; } }
详解KMP算法网址:(原创)详解KMP算法 - 孤~影 - 博客园 http://www.cnblogs.com/yjiyjige/p/3263858.html
#include<stdio.h>
const int N=1000010;
int a[N], b[10010], next[10010];
int m, n;
void Getnext()
{
int i = 0, j = -1;
while (i < m)
{
if (j == -1 || b[i] == b[j])
{
i++;
j++;
if (b[i] == b[j])
next[i] = next[j];
else next[i] = j;
}
else j = next[j];
}
}
int main ()
{
int T, i, j;
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n, &m);
for (i = 0; i < n; i++)
scanf("%d", &a[i]);
for (i = 0; i < m; i++)
scanf("%d", &b[i]);
next[0] = -1;
Getnext();
i = 0; j = 0;
while (i < n && j < m)
{
if (j == -1 || a[i] == b[j])
{
i++;
j++;
}
else j = next[j];
}
if (j == m) printf("%d
", i-j+1);
else printf("-1
");
}
return 0;
}