zoukankan      html  css  js  c++  java
  • Libsvm自定义核函数【转】

    1. 使用libsvm工具箱时,可以指定使用工具箱自带的一些核函数(-t参数),主要有:

    -t kernel_type : set type of kernel function (default 2)

    • 0 -- linear: u'*v
    • 1 -- polynomial: (gamma*u'*v + coef0)^degree
    • 2 -- radial basis function: exp(-gamma*|u-v|^2)
    • 3 -- sigmoid: tanh(gamma*u'*v + coef0)

    2. 有时我们需要使用自己的核函数,这时候可以用 -t 4参数来实现:

    -t kernel_type : set type of kernel function (default 2)
    4 -- precomputed kernel (kernel values in training_instance_matrix)

    使用-t 4参数时,再有了核函数后,需要给出核矩阵,关于核函数以及核函数构造相关的知识,大家可以看看相关书籍,在此不特别深入说明。

    比如线性核函数 是 K(x,x') = (x * x'),设训练集是train_data,设训练集有150个样本 , 测试集是test_data,设测试集有120个样本
    则 训练集的核矩阵是 ktrain1 = train_data*train_data'
    测试集的核矩阵是 ktest1 = test_data*train_data'
    想要使用-t 4参数还需要把样本的序列号放在核矩阵前面 ,形成一个新的矩阵,然后使用svmtrain建立支持向量机,再使用svmpredict进行预测即可。形式与使用其他-t参数少有不同,如下:

    ktrain1 = train_data*train_data';
    Ktrain1 = [(1:150)',ktrain1];
     
    model_precomputed1 = svmtrain(train_label, Ktrain1, '-t 4');  % 注意此处的 输入 Ktrain1
     
    ktest1 = test_data*train_data';
    Ktest1 = [(1:120)', ktest1];
     
    [predict_label_P1, accuracy_P1, dec_values_P1] = svmpredict(test_label,Ktest1,model_precomputed1); % 注意此处输入Ktest1</pre>

    下面是一个整体的小例子,大家可以看一下:

    %% Use_precomputed_kernelForLibsvm_example
    % faruto
    % last modified by 2011.04.20
    %%
    tic;
    clear;
    clc;
    close all;
    format compact;
    %%
    load heart_scale.mat;
    % Split Data
    train_data = heart_scale_inst(1:150,:);
    train_label = heart_scale_label(1:150,:);
    test_data = heart_scale_inst(151:270,:);
    test_label = heart_scale_label(151:270,:);
     
    %% Linear Kernel
    model_linear = svmtrain(train_label, train_data, '-t 0');
    [predict_label_L, accuracy_L, dec_values_L] = svmpredict(test_label, test_data, model_linear);
     
    %% Precomputed Kernel One
    % 使用的核函数 K(x,x') = (x * x')
    % 核矩阵
    ktrain1 = train_data*train_data';
    Ktrain1 = [(1:150)',ktrain1];
    model_precomputed1 = svmtrain(train_label, Ktrain1, '-t 4');
    ktest1 = test_data*train_data';
    Ktest1 = [(1:120)', ktest1];
    [predict_label_P1, accuracy_P1, dec_values_P1] = svmpredict(test_label, Ktest1, model_precomputed1);
     
    %% Precomputed Kernel Two
    % 使用的核函数 K(x,x') = ||x|| * ||x'||
    % 核矩阵
    ktrain2 = ones(150,150);
    for i = 1:150
     for j = 1:150
     ktrain2(i,j) = sum(train_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5;
     end
    end
    Ktrain2 = [(1:150)',ktrain2];
    model_precomputed2 = svmtrain(train_label, Ktrain2, '-t 4');
     
    ktest2 = ones(120,150);
    for i = 1:120
     for j = 1:150
     ktest2(i,j) = sum(test_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5;
     end
    end
    Ktest2 = [(1:120)', ktest2];
    [predict_label_P2, accuracy_P2, dec_values_P2] = svmpredict(test_label, Ktest2, model_precomputed2);
    %% Precomputed Kernel Three
    % 使用的核函数 K(x,x') = (x * x') / ||x|| * ||x'||
    % 核矩阵
    ktrain3 = ones(150,150);
    for i = 1:150
     for j = 1:150
     ktrain3(i,j) = ...
     train_data(i,:)*train_data(j,:)'/(sum(train_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5);
     end
    end
    Ktrain3 = [(1:150)',ktrain3];
    model_precomputed3 = svmtrain(train_label, Ktrain3, '-t 4');
     
    ktest3 = ones(120,150);
    for i = 1:120
     for j = 1:150
     ktest3(i,j) = ...
     test_data(i,:)*train_data(j,:)'/(sum(test_data(i,:).^2)^0.5 * sum(train_data(j,:).^2)^0.5);
     end
    end
    Ktest3 = [(1:120)', ktest3];
    [predict_label_P3, accuracy_P3, dec_values_P3] = svmpredict(test_label, Ktest3, model_precomputed3);
     
     
    %% Display the accuracy
    accuracyL = accuracy_L(1) % Display the accuracy using linear kernel
    accuracyP1 = accuracy_P1(1) % Display the accuracy using precomputed kernel One
    accuracyP2 = accuracy_P2(1) % Display the accuracy using precomputed kernel Two
    accuracyP3 = accuracy_P3(1) % Display the accuracy using precomputed kernel Three
    %%
    toc;

    运行结果:

    Accuracy = 85% (102/120) (classification)
    Accuracy = 85% (102/120) (classification)
    Accuracy = 67.5% (81/120) (classification)
    Accuracy = 84.1667% (101/120) (classification)
    accuracyL =
     85
    accuracyP1 =
     85
    accuracyP2 =
     67.5000
    accuracyP3 =
     84.1667
    Elapsed time is 1.424549 seconds.
    

     3. 交叉验证

    accuracy = svmtrain(train_label, Ktrain1, '-t 4 -v 10');  

  • 相关阅读:
    2804 最大最小数质因数
    5429 多重背包
    1851 越狱
    Gvim使用
    3622 假期
    4906 删数问题
    2845 排序的代价
    poj 3352
    常用正则表达式汇总
    功能简单例子
  • 原文地址:https://www.cnblogs.com/tec-vegetables/p/4506959.html
Copyright © 2011-2022 走看看