zoukankan      html  css  js  c++  java
  • 4-7 使用tf.train.slice_input_producer读取列表样本

    在TensorFlow数据读中,由于CUP或GPU读取过快而硬盘数据跟不上,所以采取文件队列方式:将源数据按规定规模放入文件队列,启动文件队列填充后,便可以通过sess.run读取文件

    import tensorflow as tf
    images=['image1.jpg','image2.jpg','image3.jpg','image4.jpg']#为了举例自定义列表文件
    labels=[1,2,3,4]
    
    #创建文件名队列
    [images,labels]=tf.train.slice_input_producer([images,labels],
                                  num_epochs=2,#epochs循环数,改成None则只要获取队列就有
                                  shuffle=True)#shuffle文件队列打乱
                                #输出两个tensor
    with tf.Session() as sess:#后端运算
        sess.run(tf.local_variables_initializer())#上述定义了2和True,但是在后端运行时不会被使用,需要这里的初始化,才能完成赋值
        tf.train.start_queue_runners(sess=sess)#启动队列填充过程
        for i in range(8):#一个epoachs长度4,2个就是8
            print(sess.run([images,labels]))#读取文件队列
    
    
  • 相关阅读:
    损失函数相关
    半监督学习
    自监督学习
    leetcode相关
    深度学习中的Normalization
    TCN
    用户行为序列相关
    损失函数loss相关
    MapReduce编程之实例分析:wordCount
    MapReduce编程之初学概念篇
  • 原文地址:https://www.cnblogs.com/thgpddl/p/12855377.html
Copyright © 2011-2022 走看看