zoukankan      html  css  js  c++  java
  • YinYang-GAN

    YinYang-GAN: Phase Lock + Constructionism + GAN + Cross-Modality + Iterative Inference

    structure illustration:

    [x_i in P_i, i=0,1,...,M;$$ $x_i$:sample, $P$:pattern space, $M$:number of spaces. $$hat{x}_i = G_i(x_i) = EC_i(DC_i(x_i));$$ $DC$: decoder, $EC$: encoder, $G$: generator. $$D_i(x_i, hat{x}_i) in {0,1};$$ $hat{x}_i$:generated sample, $D_i$:discriminator. $$z_i = DC_i(x_i);$$ $z_i$: latent code decoded from $x_i$ with $DC_i$. $$z'_i = sum_{j eq{i}}{T_{ji}(T_{ij}(z_i))};$$ $T_{ji}$:Translator from $j$ to $i$. $$hat{x'}_i = EC_i(z'_i);$$ $z'_i$:combined latent code, $hat{x'}_i$:final output. $$frac{partial{D_i(x_i, hat{x'}_i)}}{partial{z_i}}.$$ Differential to optimize on $z_i$. Approach#1: training a AutoEncoder instead of training a unstable GAN. Average Instance: for each given associated observation $z_j(j eq{i})$, there is an dynamic average instance $ar{z}_i=T_{j ightarrow{i}}(z_j)$. For instance, let label of 'Lady' be an associated observation, the visual compensation will be a slim body with long hair, it stands for the average instance of 'Lady' in visual space.]

  • 相关阅读:
    面向对象程序设计作业1
    寒假作业4
    寒假作业3
    寒假作业2
    寒假学习计划
    三个生命中极可爱的人与难舍的往事
    Numpy and Pandas
    入门级神经网络之权重训练
    tensorboard入门
    1
  • 原文地址:https://www.cnblogs.com/thisisajoke/p/12054290.html
Copyright © 2011-2022 走看看