zoukankan      html  css  js  c++  java
  • assignment3

    Assignment 3

    Image Captioning with Vanilla RNNs

    *  jordn rnn is better than elman rnn ! why ? just look at their struture!

    * lstm 是一种网络,还是网络中的 cell ?

    * vanilla rnn 的梯度计算方法比较特殊~,采用的是把 时间序列中的梯度全部相加的方法(这样来看 ml 中的数学计算并不严谨 。rnn 为了防止梯度爆炸都能 clip !)

    * 日狗了, tanh 的函数的导数公式在 cs231n 课件上有~,亏我搞的那么辛苦 

    * rnn backward 为什么要那么算? 

    * 学会了用 matrix 做为 indx !

    Image Captioning with LSTMs

    * LSTM 都有 n 个变种

     

               Q2.1 LSTM 结构图

                  Q2.2 : LSTM 结构图 2

     * 懒的去写 lstm_step_backward, 烦!

    Network Visualization: Saliency maps, Class Visualization, and Fooling Images (15 points)

    * 梯度方向全靠猜,不是正就是负。 梯度方向没有写错,只是场合不同。 有的例子是用来欺骗 算法的,有的例子是生成 和真实更近似的图片。所以处理梯度的方式不同!

    Style Transfer (15 points)

    为什么矩阵的 size 是那个样子,完全没看懂!

    * 没有看论文,完全是手动开撸~

    * 磕磕巴巴地做完本练习

    j_inc_loss = torch.sum((img[:,:,:,1:] - img[:,:,:,:-1])**2)
    i_inc_loss = torch.sum((img[:,:,1:,:] - img[:,:,:-1,:])**2)   这段代码有点靓!

    Generative Adversarial Networks (15 points)

    题外话

    1. 江湖趣谈: 在 09 年时后,只有 word2vector 作者写的 rnn 能收敛!他采用 clip 操作来限制爆炸的梯度

    2. 趣谈: dynet 的作者是个 “一言不合就造轮子的人!”

  • 相关阅读:
    php上传进度条
    array_combine — 创建一个数组,用一个数组的值作为其键名,另一个数组的值作为其值
    password_hash 与 password_verify
    这是一个微信带参数的二维码,自定义菜单,与图文回复
    go to 语句用起来还是挺方便的
    初次使用海豚php的一个例子
    图片下载
    一对一的关联映射
    延迟加载
    proxy和proxy-no的策略取值区别
  • 原文地址:https://www.cnblogs.com/tmortred/p/8976388.html
Copyright © 2011-2022 走看看