zoukankan      html  css  js  c++  java
  • 吴裕雄--天生自然神经网络与深度学习实战Python+Keras+TensorFlow:使用TensorFlow和Keras开发高级自然语言处理系统——LSTM网络原理以及使用LSTM实现人机问答系统

    !mkdir '/content/gdrive/My Drive/conversation'
    '''
    将文本句子分解成单词,并构建词库
    '''
    
    path = '/content/gdrive/My Drive/conversation/'
    with open(path + 'question.txt', 'r') as fopen:
      text_question = fopen.read().lower().split('
    ')
    with open(path + 'answer.txt', 'r') as fopen:
      text_answer = fopen.read().lower().split('
    ')
      
    concat_question = ' '.join(text_question).split()
    vocabulary_size_question = len(list(set(concat_question)))
    data_question, count_question, dictionary_question, rev_dictionary_question = build_dataset(concat_question, 
                                                                                             vocabulary_size_question)
    print('vocab question size: %d' %(vocabulary_size_question))
    #前4个单词有控制功能,具有含义的单词从编号4开始
    print('Most common words:', count_question[4:10])
    print('Sample data: ', data_question[:10], [rev_dictionary_question[i] for i in data_question[:10]])
    
    path = '/content/gdrive/My Drive/conversation/'
    with open(path + 'question.txt', 'r') as fopen:
      text_question = fopen.read().lower().split('
    ')
    with open(path + 'answer.txt', 'r') as fopen:
      text_answer = fopen.read().lower().split('
    ')
      
    concat_answer = ' '.join(text_answer).split()
    vocabulary_size_answer = len(list(set(concat_answer)))
    data_answer, count_answer, dictionary_answer, rev_dictionary_answer = build_dataset(concat_answer, 
                                                                                             vocabulary_size_answer)
    print('vocab answer size: %d' %(vocabulary_size_answer))
    #前4个单词有控制功能,具有含义的单词从编号4开始
    print('Most common words:', count_answer[4:10])
    print('Sample data: ', data_answer[:10], [rev_dictionary_answer[i] for i in data_answer[:10]])
    
    l = [dictionary_question['how'], dictionary_question['are'], dictionary_question['you']]
    print(l)
    l = [dictionary_answer['i'],dictionary_answer['am'], dictionary_answer['fine']]
    print(l)

    GO = dictionary_question['GO']
    PAD = dictionary_question['PAD']
    EOS = dictionary_question['EOS']
    UNK = dictionary_question['UNK']
    
    import tensorflow as tf
    '''
    tf.strided_slice(input, begin, end, stride), 对向量进行切片begin表示切片的起始位置,
    end-1为切片的结束位置
    '''
    data = [1,2,3,4,5,6,7,8]
    #从下标0开始到下标为5的元素作为切片,每隔一个元素切一刀
    x = tf.strided_slice(data, [0], [6], [1])
    with tf.Session() as sess:
      print('begin: 0, end: 6, stride: 1: ', sess.run(x))
    #从0开始到下标为5的元素范围内,每隔两个元素切一刀
    x = tf.strided_slice(data, [0], [6], [2])
    with tf.Session() as sess:
      print('begin: 0, end: 6, stride: 2: ', sess.run(x))
    #end可以是负数,表示倒数第几个元素,例如-1表示最后一个元素,-2表示倒数第二个元素
    x = tf.strided_slice(data, [2], [-2], [1])
    with tf.Session() as sess:
      print('begin:2, end 6, stride: 1: ', sess.run(x))

    '''
    tf.strided_slice如果对高维向量进行切片时,begin, end, stride要对应向量的维度,
    如果我们想把最后一列从多维向量中去除,可以运行如下代码,
    '''
    data = [[1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]]
    
    batch_size = len(data[0])
    print('batch_size: ', batch_size)
    x = tf.strided_slice(data, [0,0], [batch_size, -1], [1, 1])
    with tf.Session() as sess:
      print('begin: [0, 0], end: [batch_size, -1], stride: [1,1]: ', sess.run(x))

    x = tf.concat([tf.fill([batch_size, 2], GO), data], 1)
    with tf.Session() as sess:
      print('concat and fill', sess.run(x))

    max_value = tf.reduce_max([1,3,2])
    mask = tf.sequence_mask([1,3,2], max_value, dtype=tf.float32)
    with tf.Session() as sess:
      print('mask: ', sess.run(mask))

    class sequence2sequence:
      def  __init__(self, size_layer, num_layers, embedded_size, question_dict_size, 
                   answer_dict_size, learning_rate, batch_size):
        def  cells(reuse = False):
          return tf.nn.rnn_cell.LSTMCell(size_layer, initializer=tf.orthogonal_initializer(),
                                        reuse = reuse)
        
        self.X = tf.placeholder(tf.int32, [None, None])
        self.Y = tf.placeholder(tf.int32, [None, None])
        self.X_seq_len = tf.placeholder(tf.int32, [None])
        self.Y_seq_len = tf.placeholder(tf.int32, [None])
        
        #构造图12-22所示的embedding层
        with tf.variable_scope('encoder_embeddings'):
          #embedding层是二维矩阵,行数对应问题文本的单词格式,列数有程序指定
          encoder_embeddings = tf.Variable(tf.random_uniform([question_dict_size,
                                                             embedded_size], -1, 1))
          #self.X包含句子每个单词的编号,网络根据编号从矩阵中挑选出对应的行
          encoder_embedded = tf.nn.embedding_lookup(encoder_embeddings, self.X)
          #去掉最后一列,因为最后一个单词对应的是一个EOS控制符而不是有意义的单词
          main = tf.strided_slice(self.X, [0,0], [batch_size, -1], [1, 1])
        
        with tf.variable_scope('decoder_embeddings'):
          '''
          在main向量前面增加一列,用GO对应的值来填充,假设
          main = [ [1,2,3],
                   [4,5,6],
                   [7,8,9]]
          下面一行代码执行后,main会变成
          main = [ [0,1,2,3],
                   [0,4,5,6],
                   [0,7,8,9]]
          '''
          decoder_input = tf.concat([tf.fill([batch_size, 1], GO), main], 1)
          decoder_embeddings = tf.Variable(tf.random_uniform([answer_dict_size, embedded_size], -1, 1))
          decoder_embedded = tf.nn.embedding_lookup(decoder_embeddings, decoder_input)
          
        with tf.variable_scope('encoder'):
          #将两个LSTM节点串联起来
          rnn_cells = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in range(num_layers)])
          _, last_state = tf.nn.dynamic_rnn(rnn_cells, encoder_embedded, dtype = tf.float32)
        with tf.variable_scope('decoder'):
          rnn_cells_dec = tf.nn.rnn_cell.MultiRNNCell([cells() for _ in range(num_layers)])
          #把encoder部分LSTM网络输出的最终状态当做decoder部分的LSTM网络的初始状态
          outputs, _ = tf.nn.dynamic_rnn(rnn_cells_dec, decoder_embedded,
                                        initial_state = last_state,
                                        dtype = tf.float32)
          
        
        '''
          这里需要注意,假设self.X对应第一个句子是'how are your',self.Y对应的第一个句子是答案:'i am fine',
          后者转换为编号后的向量[4,10, 106],由于每个句子对应向量含有50个分量,
          那么不足50个单词的句子对应的向量会用控制符PAD的值进行填充,于是向量变为[4,6,106,1,1....1]
          也就是后面47个分量用1来填充,
          
          经过调用tf.sequence_mask后,会产生一个标志位向量[True, True, True, True,....True],
          于是当向量输入到网络时,sequence_loss就会查看targets参数对应向量中的50个分量,其他分量
          不看,由于答案文本中单词数可能很多,因此网络只考虑向量中对应的50个分量对应的节点进行更新,这样能有效
          降低运算量
          
          它在内部构造一个长度与answer_dict_size相同的内部向量,由于答案文本包含504个单词,因此
          网络构造内部向量的长度为504,他把所有分量的值设置为0,根据填充后向量为[4,6,106,1,1....1],
          它把下标为4,6,106,1这4个下标对应分量设置为1
          
          然后与网络的输出层做差值运算,将运算结果反向传播后,使用梯度下降法调节参数,使得网络输出最后
          结果中,下标为4,6,106,1这四个节点的值尽可能接近1,这意味着我们在调教网络看到输入语句是
          'how are you'时,它懂得回答'i am fine'
        '''
        with tf.variable_scope('logits'):
          self.logits = tf.layers.dense(outputs, answer_dict_size)
          print(self.logits)
          masks = tf.sequence_mask(self.Y_seq_len, tf.reduce_max(self.Y_seq_len), dtype = tf.float32)
          
        with tf.variable_scope('cost'):
          self.cost = tf.contrib.seq2seq.sequence_loss(logits = self.logits,
                                                      targets = self.Y
                                                      ,weights = masks)
        with tf.variable_scope('optimizer'):
          self.optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(self.cost)
    #将单词转换为编号
    def  str_idx(corpus, dic):
      X = []
      for i in corpus:
        ints = []
        for k in i.split():
          try:
            ints.append(dic[k])
          except Exception as e:
            print(e)
            #2表示句子的结束
            ints.append(2)
            
        X.append(ints)
      return X
    
    '''
    填充句子向量,当我们把句子单词转换为编号存储为向量时,规定向量的最大长度是50,如果句子单词不足50个
    后面就用控制字符PAD填充,例如'how are you' 转换为编号时是11,10,4,填充后为11,10,4,1,1,1...1总共50个元素
    '''
    def  pad_sentence_batch(sentence_batch, pad_int):
      padded_seqs = []
      seq_lens = []
      max_sentence_len = 50
      for sentence in sentence_batch:
        padded_seqs.append(sentence + [pad_int] * (max_sentence_len - len(sentence)))
        seq_lens.append(50)
      return padded_seqs, seq_lens
    
    def  check_accuracy(logits, Y):
      '''
      logits是网络预测结果,Y是正确结果,我们将网络预测结果与正确结果的契合程度
      作为网络预测准确性的判断
      '''
      acc = 0
      for i in range(logits.shape[0]):
        internal_acc = 0
        for k in range(len(Y[i])):
          if Y[i][k] == logits[i][k]:
            internal_acc += 1
        acc += (internal_acc / len(Y[i]))
        
      return acc / logits.shape[0]
    import tensorflow as tf
    import os
    #LSTM节点输出向量长度
    size_layer = 128
    #每个MultiRNNCell含有的LSTM节点个数
    num_layers = 2
    #一个单词对应的向量长度
    embedded_size = 128
    learning_rate = 0.001
    batch_size = 32
    epoch = 500
    
    tf.reset_default_graph()
    sess = tf.InteractiveSession()
    model = sequence2sequence(size_layer, num_layers, embedded_size, vocabulary_size_question + 4,
                             vocabulary_size_answer + 4, learning_rate, batch_size)
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(tf.global_variables(), max_to_keep = 2)
    checkpoint_dir = os.path.abspath(os.path.join('/content/gdrive/My Drive/', 'checkpoints_chatbot'))
    checkpoint_prefix = os.path.join(checkpoint_dir, "model")
    X = str_idx(text_question, dictionary_question)
    Y = str_idx(text_answer, dictionary_answer)
    
    
    for i in range(epoch):
      total_loss, total_accuracy = 0, 0
      for k in range(0, (len(text_question) // batch_size) * batch_size, batch_size):
        batch_x, seq_x = pad_sentence_batch(X[k : k + batch_size], PAD)
        batch_y, seq_y = pad_sentence_batch(Y[k : k + batch_size], PAD)
        
       
        predicted, loss, _ = sess.run([tf.argmax(model.logits, 2), model.cost,
                                      model.optimizer], feed_dict = {
            model.X : batch_x,
            model.Y : batch_y,
            model.X_seq_len : seq_x,
            model.Y_seq_len : seq_y
        })
        total_loss += loss
        total_accuracy += check_accuracy(predicted, batch_y)
       
      total_loss /= (len(text_question) // batch_size)
      total_accuracy /= (len(text_answer) // batch_size)
      print("epoch: %d, avg loss : %f, avg accuracy: %f" %(i+1, total_loss, total_accuracy))
      path = saver.save(sess, checkpoint_prefix, global_step = i + 1)
    import numpy as np
    import tensorflow as tf
    
    def predict(sentence, sess):
        X_in = []
        for word in sentence.split():
            try:
                X_in.append(dictionary_question[word])
            except:
                X_in.append(PAD)
                pass
            
        test, seq_x = pad_sentence_batch([X_in], PAD)
        input_batch = np.zeros([batch_size,seq_x[0]])
        input_batch[0] =test[0] 
            
        log = sess.run(tf.argmax(model.logits,2), 
                                          feed_dict={
                                                  model.X:input_batch,
                                                  model.X_seq_len:seq_x,
                                                  model.Y_seq_len:seq_x
                                                  }
                                          )
        
        result=' '.join(rev_dictionary_answer[i] for i in log[0])
        return result
        
    
    with tf.Session() as sess:
      path = '/content/gdrive/My Drive/checkpoints_chatbot/model-498'
      saver = tf.train.import_meta_graph(path + '.meta')
      #将训练后存储成文件的网络参数重新加载
      saver.restore(sess, path)
      print(predict('how are you ?', sess)) 
      print(predict('where do you live?', sess))
      print(predict('what is your name', sess))

  • 相关阅读:
    git 删除所有提交下的某个文件
    Sublime Text 中文
    git 常用文件目录介绍
    设计模式之——单例模式
    Mysql系统知识梳理
    Spring系列之——使用了哪些设计模式
    JAVA基础之——三大特征、接口和抽象类区别、重载和重写区别、==和equals区别、JAVA自动装箱和拆箱
    集合系列问题
    做一个优秀的职场人才
    Spring系列之——Spring事务以及两大核心IOC和AOP
  • 原文地址:https://www.cnblogs.com/tszr/p/12270060.html
Copyright © 2011-2022 走看看