题意:输入一个n(2<=n<=1000,n是偶数)个字符串的集合D,找一个长度最短的字符串S(不一定在D中出现),使得D中恰好一半串小于等于S,另一半串大于S。如果有多解,输出字典序最小的解。
分析:找到最中间的两个串,直接按位构造。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const double eps = 1e-8; const int MAXN = 1e3 + 10; const int MAXT = 10000 + 10; using namespace std; string s[MAXN]; string solve(int n){ int mid = n / 2; int len = s[mid - 1].size(); string ans = ""; ans += 'A'; int i = 0; while(i < len){ while(ans[i] < 'Z' && ans < s[mid - 1]) ++ans[i];//只要i不是len-1且s[mid - 1][i]不是Z,得到的ans[i]都会比s[mid - 1]恰好大1,而如果i等于len-1,则得到的ans与s[mid-1]正好相等 if(ans >= s[mid - 1] && ans < s[mid]) return ans; if(s[mid - 1][i] != ans[i]) --ans[i];//如果s[mid - 1][i]不是Z,需要减1 ans += 'A'; ++i; } } int main(){ int n; while(scanf("%d", &n) == 1){ if(!n) return 0; for(int i = 0; i < n; ++i) cin >> s[i]; sort(s, s + n); printf("%s\n", solve(n).c_str()); } return 0; }