zoukankan      html  css  js  c++  java
  • 杜教筛

    给定函数 f,g, 令 S(n) = Σ1≤i≤n f(i), 则有:

    [sf sum_{i=1}^n(f*g)(i) = sum_{i=1}^nsum_{xy=i}f(x)g(y) = sum_{y=1}^ng(y)sum_{xyle n}f(x) = sum_{y=1}^ng(y)Sleft(leftlfloorfrac ny ight floor ight) ]

    即,

    [sf g(1)S(n) = sum_{i=1}^n(f*g)(i) - sum_{y=2}^ng(y)S(lfloor n/y floor) ]

    int S(int n) {
    	int ans = * sum_{i=1}^n (f*g)(i) *
        for(int l=2, r; l<=n; l = r+1) {
          r = min(n, n / (n/l));
          ans -= Sg(l, r) * S(n / l);
        }
      return ans / g1;
    }
    

    算法应用的难点是选取 g 使得 g 的前缀和和 f*g 的前缀和都可快速计算

    如果用线性筛之类的预处理处前 N2/3 的答案, 总复杂度就是 O(N2/3) 的了。


    洛谷杜教筛模板

    对于 φ, 众所周知有 φ * 1 = id, 显然可以快速计算。

    对于 u, 众所周知有 u * 1 = ε, 显然可以快速计算。

    #include<bits/stdc++.h>
    typedef long long LL;
    using namespace std;
    
    const int maxn = 2147483647, maxm = 2e6;
    
    int m, p[2000003], v[2000003], phi[2000003], mu[2000003];
    LL Smu[2000003], Sphi[2000003];
    void euler(int n) {
    	phi[1] = mu[1] = 1;
    	for(int i = 2; i <= n; ++i) {
    		if(!v[i]) p[++m]=v[i]=i, mu[i]=-1, phi[i]=i-1;
    		for(int j = 1; j <= m; ++j) {
    			if(p[j] > v[i] || p[j] > n/i) break;
    			v[i * p[j]] = p[j];
    			mu[i * p[j]] = (i%p[j] ? -mu[i] : 0);
    			phi[i * p[j]] = phi[i] * (i%p[j] ? p[j]-1 : p[j]);
    		}
    	}
    	Smu[1] = mu[1], Sphi[1] = phi[1];
    	for(int i = 2; i <= n; ++i)
    		Smu[i] = Smu[i-1] + mu[i],
    		Sphi[i] = Sphi[i-1] + phi[i];
    }
    
    map<int,LL> ansphi;
    map<int,LL> ansmu;
    
    LL SSphi(LL n) {
    	if(n <= maxm) return Sphi[n];
    	if(ansphi.count(n)) return ansphi[n];
    	LL ans = (LL)n * (n+1) / 2;
    	for(LL i = 2, j; i <= n; i = j + 1) {
    		j = min(n, n / (n/i));
    		ans -= (LL)(j - i + 1) * SSphi(n/i);
    	}
    	return ansphi[n] = ans;
    }
    
    LL SSmu(LL n) {
    	if(n <= maxm) return Smu[n];
    	if(ansmu.count(n)) return ansmu[n];
    	LL ans = 1ll;
    	for(LL i = 2, j; i <= n; i = j + 1) {
    		j = min(n, n / (n/i));
    		ans -= (LL)(j - i + 1) * SSmu(n/i);
    	}
    	return ansmu[n] = ans;
    }
    
    int main()
    {
    	euler(2000000);
    	int T; scanf("%d",&T); while(T--) {
    		int n; scanf("%d", &n); cout << SSphi(n) << ' ' << SSmu(n) << '
    ';
    	}
    	return 0;
    }
    
    

    去掉 map 的 log 的方法:由于每次递归调用的总筛总是能表示成 (lfloordfrac Nx floor), 而 (xge N^{1/3}) 的时候都会直接查预处理的表, 所以只需要记录 x, 就可以用数组记忆化了。然而实际表现并不快, 因为每次 N 要变化, 所以每次很多东西都要重新计算。


    简单的数学题

    [sfsum_{i=1}^nsum_{j=1}^n ijgcd(i,j)\ sum_{i=1}^nsum_{j=1}^n ijcdot id(gcd(i,j))\ sum_{i=1}^nsum_{j=1}^n ijcdot (1*varphi)(gcd(i,j))\ sum_{i=1}^nsum_{j=1}^n ijsum_{dmid gcd(i,j)}varphi(d)\ sum_{i=1}^nsum_{j=1}^n ijsum_{dmid i,dmid j}varphi(d)\ ]

    然后就可以传统艺能——交换求和顺序了

    [sfsum_{d=1}^nvarphi(d)d^2sum_{i=1}^{lfloor n/d floor}isum_{j=1}^{lfloor n/d floor}j\ sum_{d=1}^nvarphi(d)d^2S(lfloor n/d floor)^2 ]

    其中, (sf S(n) = dfrac{n(n+1)}2)

    定义数论函数的点乘:(sf (fcdot g)(n) = f(n)g(n))

    有引理:若 f 是完全积性函数, g,h 是数论函数, 则 (sf fcdot(g*h) = (fcdot g)*(fcdot h))

    证明:

    [egin{align} &((fcdot g)*(fcdot h))(n)\ &=sum_{dmid n}f(d)g(d)f(frac nd)h(frac nd)\ &= f(n)sum_{nmid d}g(d)h(frac nd)\ &= (fcdot(g*h))(n) end{align} ]

    因此, 对于 (varphicdot id^2), 定义 (1cdot id^2), 那么 (id^2cdot(varphi*1) = id^3), 就是 f*g 了, 可以杜教筛了。

    #include <bits/stdc++.h>
    typedef long long LL;
    using namespace std;
    
    const int maxm = 8003333;
    LL mo;
    LL ksm(LL a, LL b) {
    	a %= mo;
    	LL res = 1ll;
    	for (; b; b >>= 1, a = a * a % mo)
    		if (b & 1) res = res * a % mo;
    	return res % mo;
    }
    
    int m, p[maxm], v[maxm], phi[maxm];
    LL mS[maxm];
    void euler(int n) {
    	phi[1] = 1;
    	for (int i = 2; i <= n; ++i) {
    		if(!v[i]) p[++m] = v[i] = i, phi[i] = i - 1;
    		for (int j = 1; j <= m; ++j) {
    			if (p[j] > v[i] || p[j] > n / i) break;
    			v[i * p[j]] = p[j];
    			phi[i * p[j]] = phi[i] * (i % p[j] ? p[j]-1 : p[j]);
    		}
    	}
    	for (int i = 1; i <= n; ++i) {
    		mS[i] = (mS[i-1] + (LL)phi[i] * i % mo * i % mo) % mo;	
    	}
    }
    
    
    LL n, inv2, inv4, inv6;
    map<int,LL> ansS;
    
    LL Sum(LL x) {
    	x %= mo;
    	return x * (x+1) % mo * inv2 % mo;
    }
    LL S2(LL x) {
    	x %= mo;
    	return x * (x+1) % mo * (2*x+1) % mo * inv6 % mo;
    }
    
    LL S3(LL x) {
    	x %= mo;
    	return x * x % mo * (x+1) % mo * (x+1) % mo * inv4 % mo;
    }
    LL S(LL n) {
    	if(n <= 8000000) return mS[n];
    	if(ansS.count(n)) return ansS[n];
    	LL ans = S3(n);
    	for (LL i=2, j; i <= n; i = j + 1) {
    		j = min(n, n / (n / i));
    		ans -= (S2(j) - S2(i-1) + mo) % mo * S(n / i) % mo;
    	}
    	ans = (ans%mo + mo) % mo;
    	return ansS[n] = ans;
    }
    
    int main ()
    { 
    	cin >> mo >> n;
    	euler(8000000);
    	inv2 = ksm(2, mo - 2), inv4 = ksm(4, mo - 2), inv6 = ksm(6, mo - 2);
    	LL ans = 0ll;
    	for (LL i = 1, j; i <= n; i = j + 1) {
    		j = min (n, n / (n / i));
    		LL t = Sum (n / i);
    		ans = (ans + (S(j) - S(i-1)) * t % mo * t % mo) % mo;
    	}
    	ans = (ans % mo + mo) % mo;
    	cout << ans;
    	return 0;
    }
    
  • 相关阅读:
    用tensorflow构建神经网络学习简单函数
    Entity Framework 6.0 Tutorials(1):Introduction
    Entity Framework Tutorial Basics(43):Download Sample Project
    Entity Framework Tutorial Basics(42):Colored Entity
    Entity Framework Tutorial Basics(41):Multiple Diagrams
    Entity Framework Tutorial Basics(40):Validate Entity
    Entity Framework Tutorial Basics(39):Raw SQL Query
    Entity Framework Tutorial Basics(38):Explicit Loading
    Entity Framework Tutorial Basics(37):Lazy Loading
    Entity Framework Tutorial Basics(36):Eager Loading
  • 原文地址:https://www.cnblogs.com/tztqwq/p/14426208.html
Copyright © 2011-2022 走看看