大意: n节点树, 每个点有权值, 三种操作: 1,换根. 2, lca(u,v)的子树权值全部增加x. 3, 查询子树权值和.
先不考虑换根, 考虑子树x加v的贡献
(1)对fa[x]到根的树链贡献为sz[x]*v;
(2)对x子树内的点y贡献为sz[y]*v;
步骤(1)可以用单点更新子树求和实现, 步骤(2)可以子树更新单点求和实现
然后就是换根板子题了.
感觉蠢得不行的题啊, 还是打了好久, 怎么能这么菜啊
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) {REP(i,1,n) cout<<a[i]<<' ';hr;} using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, a[N]; vector<int> g[N]; int sz[N], dep[N], fa[N], L[N], R[N]; int son[N], top[N]; ll c[N], c2[N]; void add(int x, ll v) { for (; x<=n; x+=x&-x) c[x]+=v; } void add2(int x, int v) { for (; x; x^=x&-x) c2[x]+=v; } void add2(int l, int r, int v) { add2(r,v),add2(l-1,-v); } ll qry(int x) { ll ret = 0; for (; x; x^=x&-x) ret += c[x]; return ret; } ll qry(int l, int r) { return qry(r)-qry(l-1); } ll qry2(int x) { ll ret = 0; for (; x<=n; x+=x&-x) ret += c2[x]; return ret; } void dfs(int x, int d, int f) { sz[x] = 1, dep[x]=d, fa[x]=f, L[x]=++*L, add(L[x],a[x]); for (int y:g[x]) if (y!=f) { dfs(y,d+1,x); sz[x]+=sz[y]; if (sz[y]>sz[son[x]]) son[x]=y; } R[x]=*L; } void dfs2(int x, int tf) { top[x]=tf; if (son[x]) dfs2(son[x],tf); for (int y:g[x]) if (y!=fa[x]&&y!=son[x]) dfs2(y,y); } int lca(int x, int y) { while (top[x]!=top[y]) { if (dep[top[x]]<dep[top[y]]) swap(x,y); x = fa[top[x]]; } if (dep[x]>dep[y]) swap(x,y); return x; } int lca(int u, int v, int rt) { int L = lca(u,v); if (lca(rt,L)!=L) return L; int x=lca(u,rt),y=lca(v,rt); if (dep[x]<dep[y]) swap(x,y); return x; } int calc(int x, int y) { int f = x, pre = 0, lca; while (top[x]!=top[y]) { if (dep[top[x]]<dep[top[y]]) swap(x,y); pre = top[x], x = fa[pre]; } if (x==y) lca=x; else lca=dep[x]<dep[y]?x:y; if (lca!=f) return 0; return fa[pre]==f?pre:son[f]; } void update(int x, int v) { add(L[fa[x]],(ll)sz[x]*v); add2(L[x],R[x],v); } void update(int x, int v, int rt) { if (x==rt) return add2(1,n,v); int t = calc(x,rt); if (!t) return update(x,v); add2(1,n,v),update(t,-v); } ll query(int x) { return qry(L[x],R[x])+sz[x]*qry2(L[x]); } ll query(int x, int rt) { if (x==rt) return query(1); int t = calc(x,rt); if (!t) return query(x); return query(1)-query(t); } int main() { int q, rt = 1; scanf("%d%d", &n, &q); REP(i,1,n) scanf("%d", a+i); REP(i,2,n) { int u, v; scanf("%d%d", &u, &v); g[u].pb(v),g[v].pb(u); } dfs(1,0,0),dfs2(1,1); while (q--) { int op, u, v, w; scanf("%d%d", &op, &u); if (op==1) rt=u; else if (op==2) { scanf("%d%d", &v, &w); update(lca(u,v,rt),w,rt); } else printf("%lld ", query(u,rt)); } }