大意: $n$门课, 第$i$门分数$a_i$, 可以增加共$m$分, 求$cnt_{mx}*cf+mi*cm$的最大值 $cnt_{mx}$为满分的科目数, $mi$为最低分, $cf$, $cm$为给定系数
枚举满分的个数, 双指针求出最低分的最大值.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head #ifdef ONLINE_JUDGE const int N = 1e6+10; #else const int N = 111; #endif int n, A, cf, cm, Ans[N]; ll sum[N], m; pii a[N]; struct {int mi,now,cnt;} opt; int main() { scanf("%d%d%d%d%lld", &n, &A, &cf, &cm, &m); REP(i,1,n) scanf("%d", &a[i].x),a[i].y=i; sort(a+1,a+1+n); REP(i,1,n) sum[i]=sum[i-1]+a[i].x; ll ans = 0, res = m; int now = 1; while (now<n&&m+sum[now]>=(ll)now*a[now+1].x) ++now; int mi = min((ll)A,a[now].x+(m+sum[now]-(ll)now*a[now].x)/now); ans = (ll)mi*cm; opt={mi,now,0}; REP(i,1,n) { res = m-((ll)i*A-sum[n]+sum[n-i]); if (res<0) break; now = min(now, n-i); while (now>1&&res+sum[now-1]<(ll)(now-1)*a[now].x) --now; mi = min((ll)A,now?a[now].x+(res+sum[now]-(ll)now*a[now].x)/now:INF); ll ret = (ll)i*cf+(ll)mi*cm; if (ret>ans) ans = ret, opt = {mi,now,i}; } printf("%lld ", ans); REP(i,1,opt.now) a[i].x=opt.mi; REP(i,n-opt.cnt+1,n) a[i].x=A; REP(i,1,n) Ans[a[i].y]=a[i].x; REP(i,1,n) printf("%d ", Ans[i]);hr; }