某次处理一个case,发现线上库里有很多数据有问题。于是决定写一个job来将有问题的数据软删除掉。涉及到的两条SQL语句如下:
<select id="loadTSKTVBillDailyFlowData" parameterClass="map" resultClass="tsKTVDailyFlowData">
/*+zebra:w*/SELECT ID,
DistributionDetailID,
PayPlanID,
FlowDirection
FROM TS_KTVBillDailyFlow WHERE FlowDirection != -1
GROUP BY DistributionDetailID
HAVING COUNT(DistributionDetailID)>1 LIMIT #pageSize#;
</select>
<update id="updateTSKTVBillDailyFlowData" parameterClass="java.util.HashMap">
UPDATE TS_KTVBillDailyFlow
SET FlowDirection = -1
WHERE
<isNotEmpty property="distributionDetailIDList">
DistributionDetailID IN
<iterate property="distributionDetailIDList" open="(" close=")" conjunction=",">
#distributionDetailIDList[]#
</iterate>
</isNotEmpty>
AND payplanId=0
</update>
前面是选取出有问题的数据,后面是将有问题的数据进行软删除。
按照这两条SQL语句的思路写完程序之后上PPE环境测试,发现第一条select语句执行速度相当慢,平均每次花费3000ms-4000ms。原因在于group操作花费了大量时间。
经过权衡,决定从hive上拉取全部有问题的数据(第一条SQL),将数据放入txt,然后写一个job来读取txt,边读txt边进行update操作。
job主要代码如下:
public class CleanKTVBillDailyFlowBiz {
private static final AvatarLogger logger = AvatarLoggerFactory.getLogger(CleanKTVBillDailyFlowBiz.class);
@Autowired
private PayPlanBillDao payPlanBillDao;
public void cleanData(){
InputStream is=this.getClass().getResourceAsStream("/DistributionDetailID.txt");
//InputStream is=当前类.class.getResourceAsStream("XX.config");
BufferedReader br=new BufferedReader(new InputStreamReader(is));
try {
String line = null;
String distributionDetailID = null;
List<String> distributionDetailIDList = new ArrayList<String>();
int i = 0;
while((line=br.readLine())!=null ){
distributionDetailID = line;
distributionDetailIDList.add(distributionDetailID);
i++;
if(i >= 500){
int rows = payPlanBillDao.updateTSKTVBillDailyFlowData(distributionDetailIDList);
logger.info(String.format("预期更新%d条,实际更新%d条", distributionDetailIDList.size(), rows));
i = 0;
distributionDetailIDList.clear();
}
}
//最后剩下不到500条单独处理
if(distributionDetailIDList.size() > 0){
int rows = payPlanBillDao.updateTSKTVBillDailyFlowData(distributionDetailIDList);
logger.info(String.format("预期更新%d条,实际更新%d条", distributionDetailIDList.size(), rows));
distributionDetailIDList.clear();
}
} catch (Exception e){
logger.error("Clean data exception", e);
}
}
}
DistributionDetailID.txt文件放在sources文件夹的根目录下,打成jar包之后位于jar包的根目录下,不能只用普通的读取文件的方式来读取txt文件的内容。