zoukankan      html  css  js  c++  java
  • 【刷题-LeetCode】152 Maximum Product Subarray

    1. Maximum Product Subarray

    Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.

    Example 1:

    Input: [2,3,-2,4]
    Output: 6
    Explanation: [2,3] has the largest product 6.
    

    Example 2:

    Input: [-2,0,-1]
    Output: 0
    Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
    

    解法 动态规划。需要设置两个dp数组,分别保存到位置i的最大和最小连续乘积,这是因为最小的乘积可能是负的,如果再乘上一个负数会变成比较大数

    [mathrm{dp\_max}[0] = mathrm{dp\_min}[0] = mathrm{nums}[0]\ mathrm{dp\_max[i]} = max{mathrm{nums}[i], mathrm{dp\_max}[i-1]*mathrm{nums}[i], mathrm{dp\_min}[i-1]*mathrm{nums}[i]}\ mathrm{dp\_min[i]} = min{mathrm{nums}[i], mathrm{dp\_max}[i-1]*mathrm{nums}[i], mathrm{dp\_min}[i-1]*mathrm{nums}[i]} ]

    对于数组dp_max和dp_min,每次更新只用两个连续的数,因此可以将空间复杂度优化为(O(1))

    class Solution {
    public:
        int maxProduct(vector<int>& nums) {
            int pre_f = nums[0], pre_g = nums[0];
            int res = pre_f;
            for(int i = 1; i < nums.size(); ++i){
                int tmp1 = max(nums[i], max(pre_f*nums[i], pre_g*nums[i]));
                int tmp2 = min(nums[i], min(pre_f*nums[i], pre_g*nums[i]));
                res = max(res, tmp1);
                pre_f = tmp1;
                pre_g = tmp2;
            }
            return res;
        }
    };
    
  • 相关阅读:
    Http中的patch
    如何实现腾讯地图的路径规划功能?
    各类数据库分页SQL语法
    ABC222F
    ABC222 G
    LG5308 [COCI2019] Quiz(wqs二分+斜率优化DP)
    [USACO21OPEN] Portals G(Kruskal)
    【做题笔记】SP27379 BLUNIQ
    【做题笔记】CF938C Constructing Tests
    CSP-J/S2021 自闭记
  • 原文地址:https://www.cnblogs.com/vinnson/p/13260826.html
Copyright © 2011-2022 走看看