zoukankan      html  css  js  c++  java
  • CF1092E Solution

    题目链接

    题解

    下文将“以该节点为根时树的最大深度最小”的节点称为“最小节点”,并将“以最小节点为根时树的最大深度”称为“最小深度”。

    题目给出的是无根树森林,易得对于每一棵树来说,使“最小节点”与其他树连接最优。而最终方案则是将所有树与“最小深度”最大(或第二大)的树建边,证明:

    设树(A,B,C)的“最小深度”分别为(x,y,z(x<y<z)),若将(y,z)分别与(z)树的“最小节点”连边,则直径最小为(min(y+z+2,x+y+1,x+z+1)=y+z+2);而将(x,y)分别与(x)树的“最小节点”连边,则直径最小为(min(x+z+2,x+y+1,y+z+1)=y+z+1)(x,z)(y)同理。

    建树后求树的直径即可。

    #include<bits/stdc++.h>
    using namespace std;
    const int N=1010;
    int fst[N],nxt[2*N],v[2*N],cnt;
    int siz[N],rt[N],dp[N],t[N],pos;
    int d[N],qwq[N],qaq[N],tot,ans;
    //siz[i]:编号为i树的"最小深度",rt[i]:编号为i树的"最小节点",dp[i]:i号节点为根时它所在树的最大深度
    //t[i]:编号为i结点所在树的编号,qwq/qaq:记录答案的建边
    void add(int a,int b)
    {
    	v[++cnt]=b;
    	nxt[cnt]=fst[a]; fst[a]=cnt;
    }
    void dfs1(int x)
    {
    	t[x]=pos;
    	for(int i=fst[x];i;i=nxt[i])
    	{
    		int y=v[i];
    		if(!t[y]) dfs1(y); 
    	}
    }
    int dfs2(int x,int fa)
    {
    	int sum=0;
    	for(int i=fst[x];i;i=nxt[i])
    	{
    		int y=v[i];
    		if(y==fa) continue;
    		sum=max(sum,dfs2(y,x));
    	}
    	return sum+1;
    }
    void dfs3(int x,int fa)
    {
    	for(int i=fst[x];i;i=nxt[i])
    	{
    		int y=v[i];
    		if(y==fa) continue;
    		dfs3(y,x);
    		ans=max(ans,d[x]+d[y]+1);
    		d[x]=max(d[x],d[y]+1);
    	}
    }
    int main()
    {
    	int n,m,x,y;
    	scanf("%d%d",&n,&m);
    	for(int i=1;i<=m;i++) 
    	{
    		scanf("%d%d",&x,&y);
    		add(x,y); add(y,x); 
    	}
        //计算t数组
    	for(int i=1;i<=n;i++)
    		if(!t[i]) {pos++; dfs1(i);}
        //计算dp数组
    	for(int i=1;i<=n;i++) dp[i]=dfs2(i,0)-1;
        //计算siz数组
    	memset(siz,0x3f,sizeof(siz));
    	for(int i=1;i<=n;i++)
    		if(dp[i]<siz[t[i]]) {siz[t[i]]=dp[i]; rt[t[i]]=i;}
        //求出最小深度最大树的最小节点
    	int maxi=-1,maxn;
    	for(int i=1;i<=pos;i++)
    		if(siz[i]>maxi) {maxi=siz[i]; maxn=i;}
        //记录答案+建边
    	for(int i=1;i<=pos;i++)
    	{
    		if(i!=maxn) 
    		{
    			qwq[++tot]=rt[maxn]; qaq[tot]=rt[i];
    			add(rt[maxn],rt[i]); add(rt[i],rt[maxn]);
    		}
    	}
        //求树的直径
    	dfs3(1,0);
    	printf("%d
    ",ans);
    	for(int i=1;i<=tot;i++) printf("%d %d
    ",qwq[i],qaq[i]);
    	return 0;
    }
    
  • 相关阅读:
    Start Python 学习笔记(琐碎知识,持续更新。。。)
    电子商务网站数据分析常用指标(转)
    设计模式学习笔记——适配器(Adapter)模式
    Json概述以及python对json的相关操作
    数据层参考资料
    Oracle内存组件与进程的相关知识总结
    面试题_二分查找及其变形
    两路归并的数组和链表实现
    Mysq性能分析 —— Genral log(普通日志)与 Slow log(慢速日式)
    设计模式学习笔记——工厂方法模式
  • 原文地址:https://www.cnblogs.com/violetholmes/p/14321634.html
Copyright © 2011-2022 走看看