题意就是找森林里的LCA,构图完成了这个题基本就没问题了。
已知的是所给的图上是可能有环的。那么可以对这些环进行类似缩点的操作(当然不是tarjan),设一个虚拟根0点,链接环上的每一个点。
对于不在环上的点直接加无向边建树就行。
预处理出每个环包含哪些点,每个环中点的顺序(环是有方向的)
对得到的树进行LCA到RMQ的转化,同时记录当前点到0点的距离,O(nlogn)的时间预处理,O(1)的时间求LCA。
分几种情况:
1、两点的LCA是环上的同一个点,这个直接出结果(根据距离)
2、两点的LCA在同一个环的不同点上,这个要根据环的方向判断一下优弧劣弧。
3、两点的LCA不再同一环上。直接输出-1 -1;
详见代码吧。。。很搓很搓的写了6K+。。。经此一役,DSU, RMQ,LAC的模板都有了。。。
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
1 //#pragma comment(linker,"/STACK:1024000000,1024000000") 2 #include <iostream> 3 #include <cstdio> 4 #include <cmath> 5 #include <vector> 6 #include <cstring> 7 #include <algorithm> 8 #include <string> 9 #include <set> 10 #include <functional> 11 #include <numeric> 12 #include <sstream> 13 #include <stack> 14 15 #define CL(arr, val) memset(arr, val, sizeof(arr)) 16 #define REP(i, n) for((i) = 0; (i) < (n); ++(i)) 17 #define FOR(i, l, h) for((i) = (l); (i) <= (h); ++(i)) 18 #define FORD(i, h, l) for((i) = (h); (i) >= (l); --(i)) 19 #define L(x) (x) << 1 20 #define R(x) (x) << 1 | 1 21 #define MID(l, r) (l + r) >> 1 22 #define Min(x, y) x < y ? x : y 23 #define Max(x, y) x < y ? y : x 24 #define E(x) (1 << (x)) 25 #define iabs(x) (x) < 0 ? -(x) : (x) 26 #define OUT(x) printf("%I64d\n", x) 27 #define lowbit(x) (x)&(-x) 28 #define Read() freopen("data.in", "r", stdin) 29 #define Write() freopen("data.out", "w", stdout); 30 31 const double eps = 1e-8; 32 typedef long long LL; 33 const int inf = ~0u>>2; 34 35 using namespace std; 36 37 const int N = 500010; 38 int n; 39 40 struct node { 41 int to; 42 int next; 43 node() {} 44 } g[N<<2]; 45 46 int head[N], t; 47 class Graph { //树。。 48 public: 49 void init() { 50 CL(head, -1); t = 0; 51 } 52 void add(int u, int v) { 53 g[t].to = v; g[t].next = head[u]; head[u] = t++; 54 } 55 }G; 56 57 58 int parent[N]; 59 class DSU { //并查集 60 public: 61 void init(int n) { 62 for(int i = 0; i <= n; ++i) parent[i] = i; 63 } 64 void union_set(int a, int b) { 65 parent[a] = b; 66 } 67 int find(int x) { 68 int k, j; 69 k = x; 70 while(x != parent[x]) x = parent[x]; 71 72 while(k != x) { 73 j = parent[k]; 74 parent[k] = x; 75 k = j; 76 } 77 return x; 78 } 79 }DSU; 80 81 int D[N], E[N<<1], R[N<<1]; 82 int Min[N<<1][20]; 83 84 class RMQ { //RMQ 85 public: 86 void build(int n) { 87 int i, j, m; 88 for(i = 1; i <= n; ++i) Min[i][0] = i; 89 m = int(log(double(n))/log(2.0)); 90 FOR(j, 1, m) { 91 FOR(i, 1, n - (1<<j) + 1) { 92 if(D[Min[i][j-1]] < D[Min[i+(1<<(j-1))][j-1]]) { 93 Min[i][j] = Min[i][j-1]; 94 } else { 95 Min[i][j] = Min[i+(1<<(j-1))][j-1]; 96 } 97 98 } 99 } 100 } 101 102 int query(int s, int e) { 103 int k = log(double(e - s + 1))/log(2.0); 104 if(D[Min[s][k]] < D[Min[e-(1<<k) + 1][k]]) return Min[s][k]; 105 else return Min[e-(1<<k) + 1][k]; 106 } 107 } Q; 108 109 int dis[N], root[N], cir[N]; 110 int nxt[N]; 111 int cnt; 112 bool vis[N]; 113 114 class LCA { //LCA 115 public: 116 void init() { 117 CL(D, 0); CL(dis, 0); 118 CL(E, 0); CL(R, 0); 119 CL(vis, 0); cnt = 0; 120 } 121 void dfs(int t, int dep) { 122 D[++cnt] = dep; 123 E[cnt] = t; 124 125 if(!vis[t]) { 126 R[t] = cnt; 127 vis[t] = true; 128 } 129 for(int i = head[t]; i != -1; i = g[i].next) { 130 if(vis[g[i].to]) continue; 131 132 dis[g[i].to] = dis[t] + 1; 133 dfs(g[i].to, dep + 1); 134 135 D[++cnt] = dep; 136 E[cnt] = t; 137 } 138 } 139 /* 140 void display() { 141 int i; 142 for(i = 1; i <= cnt; ++i) 143 printf("%-3d", i); 144 cout << endl; 145 for(i = 1; i <= cnt; ++i) 146 printf("%-3d", D[i]); 147 cout << endl; 148 for(i = 1; i <= cnt; ++i) 149 printf("%-3d", E[i]); 150 cout << endl; 151 for(i = 1; i <= n; ++i) { 152 printf("%d ", R[i]); 153 } 154 cout << endl; 155 } 156 */ 157 void solve() { 158 init(); 159 dfs(0, 0); 160 Q.build(cnt); 161 } 162 163 int query(int x, int y) { 164 x = R[x]; y = R[y]; 165 if(x > y) swap(x, y); 166 // printf("%d\n", Q.query(x, y)); 167 return E[Q.query(x, y)]; 168 } 169 }LCA; 170 171 void rdfs(int u, int r) { //把非环上点的根节点都处理出来。 172 root[u] = r; 173 for(int i = head[u]; i != -1; i = g[i].next) { 174 if(root[g[i].to] == -1) { 175 rdfs(g[i].to, r); 176 } 177 } 178 } 179 180 int num; 181 int pos[N], len[N]; //每个点在环中的位置,每个环的长度 182 183 void deal() { //预处理环的情况 184 CL(cir, -1); CL(pos, -1); 185 CL(len, 0); 186 187 DSU.init(n); 188 int i, j, cnt, x, y; 189 num = 0; 190 for(i = 1; i <= n; ++i) { 191 x = DSU.find(i); 192 y = DSU.find(nxt[i]); 193 if(x == y) cir[i] = ++num; 194 DSU.union_set(x, y); 195 } 196 197 for(i = 1; i <= n; ++i) { 198 if(cir[i] != -1) { 199 j = nxt[i]; 200 cnt = 0; 201 pos[i] = ++cnt; 202 root[i] = i; 203 while(j != i) { 204 pos[j] = ++cnt; 205 root[j] = j; 206 cir[j] = cir[i]; 207 j = nxt[j]; 208 } 209 len[cir[i]] = cnt; 210 } 211 } 212 } 213 214 215 int main() { 216 //Read(); 217 218 int i, k, p, ra, rb; 219 int a, b, x1, y1, x2, y2; 220 int ansx, ansy; 221 while(~scanf("%d%d", &n, &k)) { 222 CL(root, -1); 223 for(i = 1; i <= n; ++i) scanf("%d", nxt + i); 224 deal(); 225 G.init(); 226 for(i = 1; i <= n; ++i) { 227 if(root[i] != i) { 228 G.add(i, nxt[i]); 229 G.add(nxt[i], i); 230 //printf("*%d %d\n", i, nxt[i]); 231 } 232 } 233 for(i = 1; i <= n; ++i) { 234 if(root[i] == i) { 235 rdfs(i, i); 236 G.add(0, i); 237 G.add(i, 0); 238 //printf("*%d %d\n", 0, nxt[i]); 239 } 240 } 241 LCA.solve(); 242 //LCA.display(); 243 while(k--) { 244 scanf("%d%d", &a, &b); 245 p = LCA.query(a, b); 246 if(p != 0) { 247 printf("%d %d\n", dis[a] - dis[p], dis[b] - dis[p]); 248 continue; 249 } 250 ra = root[a], rb = root[b]; 251 if(cir[ra] != cir[rb]) {printf("-1 -1\n"); continue;} 252 x1 = x2 = dis[a] - 1; 253 y1 = y2 = dis[b] - 1; 254 //A沿着环的方向靠近B 255 if(pos[ra] < pos[rb]) x1 += pos[rb] - pos[ra]; 256 else x1 += len[cir[ra]] - (pos[ra] - pos[rb]); 257 //B沿着环的方向靠近A 258 if(pos[rb] < pos[ra]) y2 += pos[ra] - pos[rb]; 259 else y2 += len[cir[rb]] - (pos[rb] - pos[ra]); 260 /* 261 printf("(x1, y1) = (%d, %d)\n", x1, y1); 262 printf("(x2, y2) = (%d, %d)\n", x2, y2); 263 */ 264 if(max(x1, y1) < max(x2, y2)) ansx = x1, ansy = y1; 265 else if(max(x1, y1) > max(x2, y2)) ansx = x2, ansy = y2; 266 else { 267 if(min(x1, y1) < min(x2, y2)) ansx = x1, ansy = y1; 268 else if(min(x1, y1) > min(x2, y2)) ansx = x2, ansy = y2; 269 else { 270 if(x1 >= y1) ansx = x1, ansy = y1; 271 else ansx = x2, ansy = y2; 272 } 273 } 274 printf("%d %d\n", ansx, ansy); 275 } 276 } 277 return 0; 278 }