A Simple Problem with Integers
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 94448 | Accepted: 29421 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000. The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000. Each of the next Q lines represents an operation. "C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000. "Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
The sums may exceed the range of 32-bit integers.
Source
POJ Monthly--2007.11.25, Yang Yi
POJ---3264(同类型的吧)
思路:
线段树成段更新的入门题目。。学会使用lazy即可。还需要注意的是,lazy的时候更改是累加,而不是直接修改。。有可能连续几次进行修改操作。。注意这一点就好了。。
#include <iostream> #include <string.h> #include <stdio.h> #include <algorithm> #include <math.h> #include <vector> using namespace std; typedef long long LL; const int oo = 0xfffffff; const int maxn = 110007; #define lson rt<<1 #define rson rt<<1|1 int A[maxn]; struct da { int l, r; int len() { return r-l+1; } LL s, e; } tree[maxn<<2]; void build(int l, int r, int rt)// 建立一颗树
{ tree[rt].l = l; tree[rt].r = r; tree[rt].e = 0; if(l == r) { tree[rt].s = A[l]; return ; } int mid = (l+r)/2; build(l, mid, rt*2); build(mid+1, r, rson); tree[rt].s = tree[lson].s + tree[rson].s; }
void down(int rt) { tree[lson].s += tree[lson].len()*tree[rt].e; tree[rson].s += tree[rson].len()*tree[rt].e; tree[lson].e += tree[rt].e; tree[rson].e += tree[rt].e; tree[rt].e = 0; } void update(int l, int r, int val, int rt) { tree[rt].s += val*(r-l+1); if(tree[rt].l == l && r == tree[rt].r)///超时的原因****&* { tree[rt].e += val; return; } down(rt); int mid = (tree[rt].l+tree[rt].r)/2; if(r <= mid) update(l, r, val, lson); else if(l > mid)update(l, r, val, rson); else { update(l, mid, val, lson); update(mid+1, r, val,rson); } } LL query(int l, int r, int rt) { if(tree[rt].l == l && r == tree[rt].r) { return tree[rt].s; } down(rt); int mid = (tree[rt].l+tree[rt].r)/2; if(r <= mid) return query(l, r, lson); else if(l > mid) return query(l, r, rson); else { LL lsum, rsum; lsum = query(l, mid, lson); rsum = query(mid+1, r, rson); return lsum+rsum ; } } int main() { int n, q, i, a, b, c; while(scanf("%d %d", &n, &q) != EOF) { char op[20]; for(i = 1; i <= n; i++) scanf("%d", &A[i]); build(1, n, 1); while(q--) { scanf("%s %d %d", op, &a, &b); if(op[0] == 'Q') { printf("%lld ", query(a, b, 1)); continue; } scanf("%d", &c); update(a, b, c, 1); } } return 0; }