1. 对比度拉升
采用了线性函数对图像的灰度值进行变换
2. Gamma校正
采用了非线性函数(指数函数)对图像的灰度值进行变换
这两种方式的实质是对感兴趣的图像区域进行展宽,对不感兴趣的背景区域进行压缩,从而达到图像增强的效果
3. 直方图均衡化
将原始图像的直方图通过积分概率密度函数转化为概率密度为1(理想情况)的图像,从而达到提高对比度的作用。直方图均衡化的实质也是一种特定区域的展宽,但是会导致整个图像向亮的区域变换。当原始图像给定时,对应的直方图均衡化的效果也相应的确定了。
4. 直方图规定化
针对直方图均衡化的存在的一些问题,将原始图像的直方图转化为规定的直方图的形式。一般目标图像的直方图的确定需要参考原始图像的直方图,并利用多高斯函数得到。
5. 同态滤波器
图像的灰度图像f(x,y)可以看做为入射光分量和反射光分量两部分组成:f(x,y)=i(x,y)r(x,y).入射光比较的均匀,随着空间位置变化比较小,占据低频分量段。反射光由于物体性质和结构特点不同从而反射强弱很不相同的光,随着空间位置的变化比较的剧烈。占据着高频分量。基于图像是由光照谱和反射谱结合而成的原理设计的。
基于HSV空间的彩色图像增强方法
针对于灰度图像,我们主要有以上的几种处理方法,但是针对于彩色图像,由于存在RGB分量,故而不能直接将灰度图像的处理方法应用。因为直接对每一个分量使用灰度增强的方法会导致颜色的紊乱发生。
而我们可以将RGB图像转化为其他空间的图像,比如:我们可以将RGB空间的图像转换为HSV空间的图像。HSV分别指色调,饱和度,亮度。由于调整HSV三个不同的量,我们可以得到比较直观的……
附:
http://wenku.baidu.com/link?url=Q7O72Mx8eCNg1zSrTC0vh0Fh0-3DirkatBD9Y-nqdURXwZVEoNdDcvOk7SbDA8u0O_v4ZaBsoVtacy55LAJuQWxmSyKgQDdtSfRFVBPt1PG
http://blog.csdn.net/app_12062011/article/details/18601501