前言
涉及到(y=Asin(omega x+phi)+k)型中的参数(omega),(phi)的取值范围或者其具体值时,常常需要做出其函数图像来求解。
解析式含参ω
法1:用传统方法求得(f(x))的单增区间,令(2kpi-cfrac{pi}{2}leq omega xleq 2kpi-cfrac{pi}{2}(kin Z)),
解得(cfrac{2kpi}{omega}-cfrac{pi}{2omega} leq x leq cfrac{2kpi}{omega}+cfrac{pi}{2omega}(kin Z))
即(f(x))的单增区间是(left[cfrac{2kpi}{omega}-cfrac{pi}{2omega},cfrac{2kpi}{omega}+cfrac{pi}{2omega} ight](kin Z)),
令(k=0),得到距离原点左右两侧最近的单调递增区间是(left[-cfrac{pi}{2omega},cfrac{pi}{2omega} ight]),
又由于(f(x)) 在区间(left[-cfrac{pi}{2},cfrac{2pi}{3} ight])上单调递增,即 (left[-cfrac{pi}{2},cfrac{2pi}{3}]subseteq [-cfrac{pi}{2omega},cfrac{pi}{2omega} ight]),
这样就转化为不等式组,即(egin{cases} -cfrac{pi}{2}ge -cfrac{pi}{2omega}\ cfrac{2pi}{3}leq cfrac{pi}{2omega} end{cases}) ,
所以(omegaleq cfrac{3}{4}),又(omega >0),故(omegain left(0,cfrac{3}{4} ight])。
法2:(ecause omega>0,xin left[-cfrac{pi}{2},cfrac{2pi}{3} ight] herefore omega x in left[-cfrac{piomega}{2},cfrac{2piomega}{3} ight]),
又模板函数(y=sinx)在原点左右的单调递增区间是([-cfrac{pi}{2},cfrac{pi}{2}]),将(omega x)视为一个整体,
由(f(x))在(left[-cfrac{pi}{2},cfrac{2pi}{3} ight])上单调递增,故(left[-cfrac{piomega}{2},cfrac{2piomega}{3} ight]subseteq left[-cfrac{pi}{2},cfrac{pi}{2} ight])
( herefore egin{cases} -cfrac{piomega}{2}ge -cfrac{pi}{2} \ cfrac{2piomega}{3}leq cfrac{pi}{2} end{cases}),又(omega >0),故(omegain left(0,cfrac{3}{4} ight])。
法3:(ecause f(x)) 在区间(left[-cfrac{pi}{2},cfrac{2pi}{3} ight])单调递增,
故原点到(-cfrac{pi}{2},cfrac{2pi}{3}) 的距离不超过(cfrac{T}{4}),( herefore egin{cases} -cfrac{pi}{2} leq cfrac{T}{4} \ cfrac{2pi}{3} leq cfrac{T}{4} end{cases}),
故(T ge cfrac{8pi}{3}),即(T=cfrac{2pi}{omega} ge cfrac{8pi}{3}),又(omega >0),故(omegain left(0,cfrac{3}{4} ight])。
法1:由于(f(cfrac{pi}{4})=2),(f(pi)=0),做出适合题意的图像,由图像可知,
将给定区间的宽度转化为用周期来刻画,得到(cfrac{T}{4}+kcdot cfrac{T}{2}=pi-cfrac{pi}{4}=cfrac{3pi}{4}),(kin N^*),
故(T=cfrac{3pi}{1+2k}),则(omega=cfrac{2pi}{T}=cfrac{2(2k+1)}{3}),(kin N^*),
又由于(f(x))在区间((cfrac{pi}{4},cfrac{pi}{3}))上单调,则(cfrac{pi}{3}-cfrac{pi}{4}leqslant cfrac{T}{2}),[1]
则(cfrac{pi}{3}-cfrac{pi}{4}leqslant cfrac{T}{2}),
故(Tgeqslant cfrac{pi}{6}),故(omega=cfrac{2pi}{T}leqslant 12),
即(cfrac{2(2k+1)}{3}leqslant 12),则(kleqslant cfrac{17}{2}),(kin N),
所以,符合条件的(k=0),(1),(cdots),(8),
则符合题意的(omega)的值共有(9)个;
法2:由于(f(cfrac{pi}{4})=2),(f(pi)=0),则(2sin(omegacdot cfrac{pi}{4}+phi)=2),(2sin(omegacdot pi+phi)=0),
即(left{egin{array}{l}{omegacdot cfrac{pi}{4}+phi=2k_1pi+cfrac{pi}{2},k_1in Z①}\{omegacdot pi+phi=k_2pi,k_2in Z②}end{array} ight.)
②-①得到,(cfrac{3pi}{4}cdot omega=(k_2-2k_1)pi-cfrac{pi}{2}),
由于(k_1in Z),(k_2in Z),故(k_2-2k_1in Z),令(k_2-2k_1=k),
则上式转化为(cfrac{3pi}{4}cdot omega=kpi-cfrac{pi}{2}),(kin Z),
即(omega=cfrac{2(2k-1)}{3}),又由于(omega>0),故(kin N^*),
又由于(f(x))在区间((cfrac{pi}{4},cfrac{pi}{3}))上单调,则(cfrac{pi}{3}-cfrac{pi}{4}leqslant cfrac{T}{2}),
故(Tgeqslant cfrac{pi}{6}),故(omega=cfrac{2pi}{T}leqslant 12),
即(cfrac{2(2k-1)}{3}leqslant 12),则(kleqslant cfrac{19}{2}),(kin N),
故符合条件的(k=1),(2),(cdots),(9),
则符合题意的(omega)的值共有(9)个;
解后反思:本题目容易犯错:当解得(omega)的表达式后,用(omega)的某一个值为切入点求得(phi)的值,然后利用单调性求(omega)的个数,这个思路是错误的;
分析:由于是涉及函数的值域,故我们一般是先求出整体自变量(omega x)的取值范围,故分类讨论如下:
当(omega >0)时,由(-cfrac{pi}{3}leq xleq cfrac{pi}{4}),故(-cfrac{omegapi}{3}leq xleq cfrac{omegapi}{4}),
由于函数的最小值是(-2),故需要满足条件(-cfrac{omegapi}{3}leq -cfrac{pi}{2}),解得(omega ge cfrac{3}{2});
当(omega <0)时,由(-cfrac{pi}{3}leq xleq cfrac{pi}{4}),故(cfrac{omegapi}{4}leq xleq -cfrac{omegapi}{3}),
由于函数的最小值是(-2),故需要满足条件(cfrac{omegapi}{4}leq -cfrac{pi}{2}),解得(omega leq -2);
故(omega)的取值范围为((-infty,-2]cup[cfrac{3}{2},+infty))。
分析:(f(x)=sinx+acosx=sqrt{a^2+1}sin(x+phi),tanphi =a),
由题目可知,(cfrac{5pi}{3}+phi=kpi+cfrac{pi}{2}),故(phi=kpi+cfrac{pi}{2}-cfrac{5pi}{3}=kpi-cfrac{7pi}{6}),
由于(phi)的值只需要考虑其存在性,故从简原则,
令(k=1),(phi=-cfrac{pi}{6}),从而(a=tanphi=tan(-cfrac{pi}{6})=-cfrac{sqrt{3}}{3}),
所以(g(x)=-cfrac{sqrt{3}}{3}sinx+cosx=cfrac{2sqrt{3}}{3}sin(x+ heta),tan heta=-sqrt{3}),
故(g(x)_{max}=cfrac{2sqrt{3}}{3}).
分析:有题目可知(omega =cfrac{2pi}{T}),(T)越小(越大),则(omega)越大(越小);
若题目中已知的两个对称中心是相邻的,则此时(T)最大,
由(cfrac{T}{2}=cfrac{pi}{4}-cfrac{pi}{12}=cfrac{pi}{6}),
故此时(T_{max}=cfrac{pi}{3}),故(omega_{min} =cfrac{2pi}{cfrac{pi}{3}}=6).
分析:给定函数的周期是(T=cfrac{2pi}{omega}),
向左平移(cfrac{pi}{2})个单位长度,所得图像与原图像重合,
则平移长度必然等于周期的整数倍,
则有(cfrac{pi}{2}=kcdot cfrac{2pi}{omega}(kin Z)),
即(omega=4k(kin Z)),故(omega)的值不可能等于6。
法1:将函数(y=2sin(omega x-cfrac{pi}{4})(omega >0))的图象向左平移(cfrac{pi}{4})个单位长度后,
得到(y=2sin[omega (x+cfrac{pi}{4})-cfrac{pi}{4}]=2sin(omega x+cfrac{(omega-1)pi}{4}));
将函数(y=2sin(omega x-cfrac{pi}{4})(omega >0))的图象向右平移(cfrac{pi}{4})个单位长度后,
得到(y=2sin[omega (x-cfrac{pi}{4})-cfrac{pi}{4}]=2sin(omega x-cfrac{(omega+1)pi}{4}));
由于平移后的对称轴重合,故自变量的整体差值为(kpi),
故(omega x+cfrac{(omega-1)pi}{4}=omega x-cfrac{(omega+1)pi}{4}+kpi(kin Z));
化简得到(omega=2k(kin Z)),又(omega>0);
故(omega_{min}=2)。
法2:【暂作记录,再思考】
将函数(y=2sin(omega x-cfrac{pi}{4})(omega >0))的图象向左平移(cfrac{pi}{4})个单位长度后,
由于周期的作用,其实平移的长度是(cfrac{piomega}{4});
将函数(y=2sin(omega x-cfrac{pi}{4})(omega >0))的图象向右平移(cfrac{pi}{4})个单位长度后,
由于周期的作用,其实平移的长度也是(cfrac{piomega}{4});
这样的平移效果,相当于视原图像不动,再将其图像一次平移距离为(cfrac{2piomega}{4});
由于平移后的对称轴重合,故平移距离应该是(kpi),即(cfrac{2piomega}{4}=kpi);
化简得到(omega=2k(kin Z)),又(omega>0);
故(omega_{min}=2)。
解后反思:
1、将周期函数的图像平移后,若所得图像与原图像重合,则平移长度必然等于周期的整数倍,或者平移前后的自变量整体差值为(kcdot 2pi(kin Z));
比如,将(y=sin(omega x+cfrac{pi}{4})),向左平移(cfrac{pi}{3})个单位,所得图像与原图像重合,求正整数(omega)的最小值;
思路1:由平移长度必然等于周期的整数倍得到,(cfrac{pi}{3}=kcdot cfrac{2pi}{omega}),
整理得到(omega=6k(omega >0)),故(omega_{min}=6);
思路2:由平移前后的自变量整体差值为(kcdot 2pi(kin Z))得到,(omega(x+cfrac{pi}{3})+cfrac{pi}{4}=omega x+cfrac{pi}{4}+2kpi),
整理得到(omega=6k(omega >0)),故(omega_{min}=6);
2、将周期函数的图像平移后,若所得图像与原图像对称轴重合,则平移长度必然等于半周期的整数倍,或者平移前后的自变量整体差值为(kcdot pi(kin Z));
可仿上引例,自行举例。
分析:(f(x)=cfrac{1-cosomega x}{2}+cfrac{1}{2}sinomega x-cfrac{1}{2}=cfrac{1}{2}(sinomega x-cosomega x))
(=cfrac{sqrt{2}}{2}sin(omega x-cfrac{pi}{4})),
法1:补集法,从数的角度入手分析,假设(f(x))在区间((pi,2pi))内有零点(x_0),使得(f(x)=cfrac{sqrt{2}}{2}sin(omega x_0-cfrac{pi}{4})=0),
则(omega x_0-cfrac{pi}{4}=kpi(kin Z)),即(x_0=cfrac{kpi}{omega}+cfrac{pi}{4omega}),
即(x_0=cfrac{(4k+1)pi}{4omega}),又(pi<x_0<2pi),
则(pi<cfrac{4k+1}{4omega}<2pi(kin Z)),即(left{egin{array}{l}{4omega<4k+1}\{8omega>4k+1}end{array} ight.)
由于(omega>0),故给(k)赋值从(k=0)开始,
①当(k=0)时,(left{egin{array}{l}{4omega<1}\{8omega>1}end{array} ight.),即(cfrac{1}{8}<omega<cfrac{1}{4});
②当(k=1)时,(left{egin{array}{l}{4omega<4+1}\{8omega>4+1}end{array} ight.),即(cfrac{5}{8}<omega<cfrac{5}{4});
③当(k=2)时,(left{egin{array}{l}{4omega<8+1}\{8omega>8+1}end{array} ight.),即(cfrac{9}{8}<omega<cfrac{9}{4});
④当(k=3)时,(left{egin{array}{l}{4omega<12+1}\{8omega>12+1}end{array} ight.),即(cfrac{13}{8}<omega<cfrac{13}{4});
⑤当(k=4,cdots)时,(cdots)
以上情形取并集,得到当函数(f(x))在区间((pi,2pi))内有零点(x_0)时,(omega)的取值范围是((cfrac{1}{8},cfrac{1}{4})cup(cfrac{5}{8},+infty)),
故函数(f(x))在区间((pi,2pi))内没有零点时,(omega)的取值范围是((0,cfrac{1}{8}]cup[cfrac{1}{4},cfrac{5}{8}]),故选(D)。
法2:直接法,从数的角度入手分析,函数(f(x))在区间((pi,2pi))内没有零点,则(sin(omega x_0-cfrac{pi}{4})=0)在区间((pi,2pi))内无解,
则(kpi<omega x-cfrac{pi}{4}<kpi+pi(kin Z)),即(kpi+cfrac{pi}{4}<omega x<kpi+cfrac{5pi}{4}(kin Z)),
则(cfrac{kpi}{omega}+cfrac{pi}{4omega}<x_0<cfrac{kpi}{omega}+cfrac{5pi}{4omega})
即(cfrac{(4k+1)pi}{4omega}<x<cfrac{(4k+5)pi}{4omega})恒成立,由于(xin (pi,2pi)),
则(cfrac{(4k+1)pi}{4omega}leq pi)且(2pileq cfrac{(4k+5)pi}{4omega});
即(left{egin{array}{l}{4omegage 4k+1}\{8omegaleq 4k+5}end{array} ight.)
①当(k=-1)时,(4omegage -3)且(8omega leq 1),解得(0<omegaleq cfrac{1}{8});
②当(k=0)时,(4omegage 1)且(8omega leq 5),解得(cfrac{1}{4}leq omegaleq cfrac{5}{8});
③当(k=1)时,(4omegage 5)且(8omega leq 9),解得(cfrac{5}{4}leq omegaleq cfrac{9}{8}),实质为空集;
④当(k=2)时,(4omegage 9)且(8omega leq 13),解得(cfrac{9}{4}leq omegaleq cfrac{13}{8}),实质为空集;
⑤当(k=3,cdots)时,等等,解集都是空集;
综上所述,函数(f(x))在区间((pi,2pi))内没有零点时,(omega)的取值范围是((0,cfrac{1}{8}]cup[cfrac{1}{4},cfrac{5}{8}]),故选(D)。
法3:高考解法,从数的角度入手分析,接上述解法,得到
(sin(omega x_0-cfrac{pi}{4})=0)在区间((pi,2pi))内无解,
即(x=cfrac{kpi+frac{pi}{4}}{omega} otin (pi,2pi)),
则(omega otin (cfrac{1}{8},cfrac{1}{4})cup (cfrac{5}{8},cfrac{5}{4})cup (cfrac{9}{8},cfrac{9}{4})cupcdots = (cfrac{1}{8},cfrac{1}{4})cup (cfrac{5}{8},+infty))
由于函数(f(x))在区间((pi,2pi))内没有零点,(omega)的取值范围是((0,cfrac{1}{8}]cup[cfrac{1}{4},cfrac{5}{8}]),故选(D)。
法4:如下图所示,从形的角度入手分析:
要使得函数在((pi,2pi))内没有零点,则有以下情形成立:
①(2pileq cfrac{pi}{4omega}),解得(0<omegaleq cfrac{1}{8});
②(left{ egin{array}{l}{ cfrac{pi}{4omega}leq pi }\ {2pi leq cfrac{5pi}{4omega}}end{array} ight.) ,解得$ cfrac{1}{4}<omega leq cfrac{5}{8}$;
③(left{egin{array}{l}{cfrac{5pi}{4omega}leq pi}\{2pileqcfrac{9pi}{4omega}} end{array} ight.),解得(cfrac{5}{4}<omegaleq cfrac{9}{8});即(omegain varnothing);
④(left{egin{array}{l}{cfrac{9pi}{4omega}leq pi}\{2pileqcfrac{13pi}{4omega}} end{array} ight.),解得(cfrac{9}{4}<omegaleq cfrac{13}{8});即(omegain varnothing);
⑤(cdots),解得(omegain varnothing);
综上所述,(omega)的取值范围是((0,cfrac{1}{8}]cup[cfrac{1}{4},cfrac{5}{8}]),故选(D)。
分析:有题目可知,(left{egin{array}{l}{cfrac{5}{4}cdot T<2pi ①}\{2pileq cfrac{7}{4}cdot T②}end{array} ight.),
注意由于是在开区间((0,2pi))上,故①没有等号,而②有等号;
即(left{egin{array}{l}{cfrac{5}{4}cdot cfrac{2pi}{omega}<2pi }\{2pileq cfrac{7}{4}cdot cfrac{2pi}{omega}}end{array} ight.),解得(cfrac{5}{4}<omegaleq cfrac{7}{4})。故选(A)。
分析:由(f(cfrac{2pi}{3})=f(cfrac{5pi}{6}))可知,函数(f(x))有一条对称轴为(x=cfrac{3pi}{4}),
且满足(omegacdot cfrac{3pi}{4}-cfrac{pi}{3}=2kpi),(kin Z),即(omega =cfrac{8}{3}k+cfrac{4}{9});
又函数(f(x))在((cfrac{2pi}{3},cfrac{5pi}{6}))上有最大值无最小值,
则(T>cfrac{5pi}{6}-cfrac{2pi}{3}=cfrac{pi}{6}),即(cfrac{2pi}{omega}>cfrac{pi}{6}),
即(omega <12),又由(omega =cfrac{8}{3}k+cfrac{4}{9}<12),解得(kleq 4),
故当(k=4)时,(omega_{max}=cfrac{8}{3} imes 4+cfrac{4}{9}=cfrac{100}{9}),故选(D)。
分析:将函数(f(x))化简,得到(f(x)=sin(omega x+cfrac{pi}{6})),则平移得到(g(x)=sinomega x),做出函数(g(x))的简图如下,
由图可知,若(g(x))在区间([-cfrac{pi}{4},cfrac{3pi}{4}])上单调递增,且在([0,2pi])上有两个零点,只需要满足条件
(left{egin{array}{l}{cfrac{3pi}{4}leq cfrac{pi}{2omega}}\{cfrac{pi}{omega}leq 2pi }end{array} ight.),解得(cfrac{1}{2}leq omega leq cfrac{2}{3});即所求范围为([cfrac{1}{2},cfrac{2}{3}])
分析:先由(R)上的偶函数,得到(phi=cfrac{pi}{2}),故函数转化为(f(x)=coscfrac{pi}{omega}x),做出其函数简图,利用图像得到,(3leq omega),即(omega_{min}=3),故选(C)。
法1:由于(sinphi=cfrac{sqrt{3}}{2}),则(phi=cfrac{pi}{3}),或者(phi=cfrac{2pi}{3}),
当(phi=cfrac{pi}{3})时,由于((cfrac{pi}{6},0))为其对称中心,则(cfrac{pi}{6} omega +cfrac{pi}{3}=kpi(kin Z)),求得(omega =6k-2),(omega_{min}=4);
当(phi=cfrac{2pi}{3})时,由于((cfrac{pi}{6},0))为其对称中心,则(cfrac{pi}{6} omega +cfrac{2pi}{3}=kpi(kin Z)),求得(omega =6k-4),(omega_{min}=2);
则(omega_{min}=2),故选(C)。其实此方法还可以再优化,如下,
法2:利用相位法,由于函数(f(x))可以看成先有函数(y=sinx)向左平移(phi)的单位得到(y=sin(x+phi)),然后再伸缩得到,
由于图像的最高点在(y)轴的左侧,故平移的距离一定大于(cfrac{pi}{2}),(或者说函数与(y)轴的交点在函数的单调递减区间上,故由(sinphi=cfrac{sqrt{3}}{2}),平移的距离一定大于(cfrac{pi}{2}),)
以及(phiin (0,2pi)),只能得到(phi=cfrac{2pi}{3}),又由于对称中心为((cfrac{pi}{6},0)),
则(cfrac{pi}{6} omega +cfrac{2pi}{3}=kpi(kin Z)),即(omega =6k-4),从而解得(omega_{min}=2);故选(C)。
法3:导数法,(f'(x)=omega cos(omega x+phi)),由图像可知,当(x=0)时,(f'(x)<0),即(omega cosphi<0),
又(sinphi=cfrac{sqrt{3}}{2}),故(phi=cfrac{2pi}{3}),又由于对称中心为((cfrac{pi}{6},0)),
则(cfrac{pi}{6} omega +cfrac{2pi}{3}=kpi(kin Z)),即(omega =6k-4),从而解得(omega_{min}=2);故选(C)。
分析:由题可知,(cfrac{pi}{3}omega +cfrac{pi}{6}=cfrac{kpi}{2}),(kin Z),则(2omega+1=3k),逐项代入验证选(C)。
解析:由题设可知,(y=g(x)=2sin[omega(x+cfrac{pi}{3omega})-cfrac{pi}{3}]=2sinomega x)((omega>0)),
由于(y=g(x))在区间([-cfrac{pi}{6},cfrac{pi}{4}])上为增函数,且(omega>0),
则有(-cfrac{omegapi}{6}leqslant omega xleqslant cfrac{omegapi}{4}),且有([-cfrac{omegapi}{6},cfrac{omegapi}{4}]subseteq [-cfrac{pi}{2},cfrac{pi}{2}]),
所以(left{egin{array}{l}{-cfrac{omegapi}{6}geqslant -cfrac{pi}{2}}\{cfrac{omegapi}{4}leqslant cfrac{pi}{2}}end{array} ight.),解得(left{egin{array}{l}{omegaleqslant 3}\{omegaleqslant 2}end{array} ight.),
则(omega leqslant 2),所以(omega)的最大值为(2).
分析:由于(xin [0,pi]),(omega >0),则(omega x-cfrac{pi}{6}in [-cfrac{pi}{6},omega x-cfrac{pi}{6}]),
在以(omega x-cfrac{pi}{6})为横轴做函数的图像时,由于函数要有零点,则必须满足(omega x-cfrac{pi}{6}geqslant 0)①;[2]
又由于值域(Min [-cfrac{1}{2},+infty)),实质是值域(Min [-cfrac{1}{2},1]),则必须满足(omega x-cfrac{pi}{6}leqslantcfrac{7pi}{6})②;[3]
联立①②,解得(omega in [cfrac{1}{6},cfrac{4}{3}]),故选(C)。
解析式含参φ
分析:由于(f(x)=f(cfrac{pi}{2}-x)),故函数的对称轴为(x=cfrac{pi}{4}),
又由于(f(x)_{max}=sqrt{1+a^2}=2),故(a=pm 3),则(f(x)=2sin(2x+phipm cfrac{pi}{3})),
于是有(2 imes cfrac{pi}{4}+phipm cfrac{pi}{3}=kpi+cfrac{pi}{2}),(kin Z),
则(phi=kpipm cfrac{pi}{3}in (0,pi)),故(phi=cfrac{pi}{3})或(phi=cfrac{2pi}{3}),故选(C).
分析:先变形得到(f(x)=2cos(2x+cfrac{pi}{3})),将其平移得到(y=2cos[2(x+phi)+cfrac{pi}{3}]),
由其最低点坐标得到(2 imes(-cfrac{pi}{12})+2phi+cfrac{pi}{3}=2kpi+pi),
从而(phi=kpi+cfrac{5pi}{12}),令(k=0)解得(phi=cfrac{5pi}{12}in (-cfrac{pi}{2},-cfrac{pi}{2})),故(f(cfrac{5pi}{12})=-sqrt{3})。
反思:在求解(phi)值时,还可以利用题目给定的零点来计算;还可以先转化为(f(x)=-2sin(2x-cfrac{pi}{6}))来计算;
法1:由题目得到(y=sin2x-sqrt{3}cos2x=2sin(2x-cfrac{pi}{3})),则将其向左平移(phi)个单位长度后得到(f(x)=2sin(2x+2phi-cfrac{pi}{3})),
由(2kpi+cfrac{pi}{2}leq 2x+2phi-cfrac{pi}{3}leq 2kpi+cfrac{3pi}{2}),得到单减区间([kpi+cfrac{5pi}{12}-phi,kpi+cfrac{11pi}{12}-phi]),(kin Z)
由于(f(x))在((cfrac{pi}{4},cfrac{pi}{2}))上单调递减,故必然满足((cfrac{pi}{4},cfrac{pi}{2})subseteq [kpi+cfrac{5pi}{12}-phi,kpi+cfrac{11pi}{12}-phi])
由(left{egin{array}{l}{kpi+cfrac{5pi}{12}-phileq cfrac{pi}{4} }\{cfrac{pi}{2}leq kpi+cfrac{11pi}{12}-phi}end{array} ight.);解得(kpi+cfrac{pi}{6}leq phi leq kpi+cfrac{5pi}{12}(kin Z)),
令(k=0),即得到(cfrac{pi}{6}leq phi leq cfrac{5pi}{12}),故选(D)。
法2:由题目得到(y=sin2x-sqrt{3}cos2x=2sin(2x-cfrac{pi}{3})),则将其向左平移(phi)个单位长度后得到(f(x)=2sin(2x+2phi-cfrac{pi}{3})),
又由于模板函数(y=sin2x)的靠近原点的单调递减区间为([cfrac{pi}{4},cfrac{3pi}{4}]),故将(y=sin2x)向左平移(phi-cfrac{pi}{6})即得到(f(x)=2sin(2x+2phi-cfrac{pi}{3})),
故单调递减区间相应的变化为([cfrac{pi}{4}-phi+cfrac{pi}{6},cfrac{3pi}{4}-phi+cfrac{pi}{6}]),又题目给定(f(x))在((cfrac{pi}{4},cfrac{pi}{2}))上单调递减,
则((cfrac{pi}{4},cfrac{pi}{2})subseteq [cfrac{pi}{4}-phi+cfrac{pi}{6},cfrac{3pi}{4}-phi+cfrac{pi}{6}]),
由(left{egin{array}{l}{cfrac{pi}{4}-phi+cfrac{pi}{6}leq cfrac{pi}{4} }\{cfrac{pi}{2}leq cfrac{3pi}{4}-phi+cfrac{pi}{6}}end{array} ight.);得到(cfrac{pi}{6}leq phi leq cfrac{5pi}{12}),故选(D)。
分析:将函数(f(x))化简为(f(x)==sqrt{5}(sinxcdot cfrac{2}{sqrt{5}}+cosxcdot cfrac{1}{sqrt{5}})=sqrt{5}sin(x+alpha)),其中(cosalpha=cfrac{2}{sqrt{5}}),(sinalpha=cfrac{1}{sqrt{5}}),同理将函数(g(x))化简为(g(x)=sqrt{5}sin(x-alpha)),
由于函数(f(x))向右平移(phi)个单位长度,得到(y=sqrt{5}sin(x-phi+alpha)),
则(sqrt{5}sin(x-phi+alpha)=sqrt{5}sin(x-alpha))对任意(xin R)恒成立,
故有(x-phi+alpha=2kpi+x-alpha),即(phi=2alpha-2kpi),(kin Z),
故(sinphi=sin(2alpha-2kpi)=sin2alpha=2sinalphacdot cosalpha=2 imescfrac{2}{sqrt{5}} imescfrac{1}{sqrt{5}}=cfrac{4}{5}).
分析:(f(x)=sin(2x+cfrac{pi}{6})),(g(x)=sin(2x+2phi+cfrac{pi}{6})),由于函数(g(x))的图像关于(y)轴对称,则函数(g(x))在(x=0)时取到最值,这样将选项代入验证,选(A)。
法1:验证法,将函数(y=sin6x)的图像向右平移(cfrac{pi}{12})个单位,得到(y=sin(6x-cfrac{pi}{2})),验证选项(D),由(y=sin(6x+cfrac{3pi}{2})=sin(6x+2pi-cfrac{pi}{2})=sin(6x-cfrac{pi}{2})),故选项(D)正确,同理可以验证排除其他的选项;
法2:计算赋值法,将函数(y=sin6x)的图像向右平移(cfrac{pi}{12})个单位,得到(y=sin(6x-cfrac{pi}{2})),
要使得其图像和函数(y=sin(6x-phi))((-3pi<phi<-pi))的图像重合,则需要(6x-cfrac{pi}{2}+2kpi=6x-phi),
即(phi=-2kpi+cfrac{pi}{2}(kin Z)),令(k=1),得到(phi=-cfrac{3pi}{2}in (-3pi,-pi)),故选(D)。
分析:函数经过相应的变换得到,(y=2sin(2x-2phi+cfrac{pi}{3})+1),由于函数图像经过((cfrac{pi}{8},1)),
则有(2 imes cfrac{pi}{8}-2phi+cfrac{pi}{3}=kpi),(kin Z),变形整理得到,
(phi=cfrac{kpi}{2}+cfrac{7pi}{24}),(kin Z),令(k=0),得到(phi_{min}=cfrac{7pi}{24}),故选(D).
给定区间含参
法1:从形上入手分析,正确、准确做出函数的图像,是求解的先决条件。
由图像能直观的得到,要使得函数在([0,cfrac{x_0}{3}])和([2x_0,cfrac{7pi}{6}])上都是单调递增函数,
则必须同时满足条件(left{egin{array}{l}{cfrac{x_0}{3}leq cfrac{pi}{6}}\{2x_0ge cfrac{2pi}{3}}end{array} ight.),解得(cfrac{pi}{3}leq x_0leq cfrac{pi}{2}),故选(B).
法2:从数上入手分析,用常规方法先求得给定函数的单调递增区间,由(2kpi-cfrac{pi}{2}leq 2x+cfrac{pi}{6}leq 2kpi+cfrac{pi}{2}),
解得单调递增区间为([kpi-cfrac{pi}{3},kpi+cfrac{pi}{6}]),(kin Z),
当(k=0)时,单增区间为([-cfrac{pi}{3},cfrac{pi}{6}]),
当(k=1)时,单增区间为([cfrac{2pi}{3},cfrac{7pi}{6}]),
又题目要求函数在([0,cfrac{x_0}{3}])和([2x_0,cfrac{7pi}{6}])上都是单调递增函数,
则必须同时满足条件(left{egin{array}{l}{cfrac{x_0}{3}leq cfrac{pi}{6}}\{2x_0ge cfrac{2pi}{3}}end{array} ight.),解得(cfrac{pi}{3}leq x_0leq cfrac{pi}{2}),故选(B).
分析:(f(x)=sin x+sqrt{3}cos x=2(cfrac{1}{2}sin x+cfrac{sqrt{3}}{2}cos x)=2sin(x+cfrac{pi}{3})),
在([-m,m](m>0))上是增函数,将(x+cfrac{pi}{3})视为整体,对比函数(y=sinx)的单调性可知,
则(left{egin{array}{l}{-m+cfrac{pi}{3}geqslant -cfrac{pi}{2}}\{m+cfrac{pi}{3}leqslant cfrac{pi}{2}}end{array} ight.) 解得(left{egin{array}{l}{mleqslant cfrac{5pi}{6}}\{mleqslant cfrac{pi}{6}}end{array} ight.)
则(mleqslant cfrac{pi}{6}),故(m)的最大值为(cfrac{pi}{6}),故选(C).
由于(f(cfrac{pi}{4}))达到极值或最值,故题目虽说给定了函数单调[可能包含单调递增或单调递减两种情形],其实只能是单调递减,
又由于单调区间的最大宽度等于半周期,故给定的单调区间的宽度必然小于或等于半周期; ↩︎只有确保图像经过原点(包含原点),才能保证函数至少有一个零点;用数的形式限制为(omega x-cfrac{pi}{6}geqslant 0); ↩︎
当图像从左往右延伸时,如果经过点((cfrac{7pi}{6},-cfrac{1}{2})),则函数的值域就不再满足最小值为(-cfrac{1}{2}),
故限制为(omega x-cfrac{pi}{6}leqslantcfrac{7pi}{6}); ↩︎