zoukankan      html  css  js  c++  java
  • leetcode 110 Balanced Binary Tree

    Balanced Binary Tree Total Accepted: 63288 Total Submissions: 198315 My Submissions

                         

    Given a binary tree, determine if it is height-balanced.

    For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.




    我的解决方案:一个非递归一个递归,居然比全递归的版本慢。


    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
    int Depth(TreeNode* root)
        {
           if(root == NULL)return 0;
            
            int result = 0;
            queue<TreeNode *>q;
            q.push(root);
            
            while(!q.empty())
            {
                ++result;
                
                for(int i = 0,n = q.size(); i < n ; i++)
                {
                    TreeNode* p = q.front();
                    q.pop();
                    
                    if(p->left!= NULL)q.push(p->left);
                    if(p->right!= NULL)q.push(p->right);
                }
                
               
            }
             return result;
        }
        
        bool isBalanced(TreeNode* root)
        {
            if(root == NULL)
            return true;
            
            int left = Depth(root->left);
            int right = Depth(root -> right);
            return abs(left - right)<=1&& isBalanced(root -> left)&&isBalanced(root ->right);
        }
    };



    This problem is generally believed to have two solutions: the top down approach and the bottom up way.
    
    1.The first method checks whether the tree is balanced strictly according to the definition of balanced binary tree: the difference between the heights of the two sub trees are not bigger than 1, and both the left sub tree and right sub tree are also balanced. With the helper function depth(), we could easily write the code; 
    
    class solution {
    public:
        int depth (TreeNode *root) {
            if (root == NULL) return 0;
            return max (depth(root -> left), depth (root -> right)) + 1;
        }
    
        bool isBalanced (TreeNode *root) {
            if (root == NULL) return true;
    
            int left=depth(root->left);
            int right=depth(root->right);
    
            return abs(left - right) <= 1 && isBalanced(root->left) && isBalanced(root->right);
        }
    };
    
    For the current node root, calling depth() for its left and right children actually has to access all of its children, thus the complexity is O(N). We do this for each node in the tree, so the overall complexity of isBalanced will be O(N^2). This is a top down approach.
    
    2.The second method is based on DFS. Instead of calling depth() explicitly for each child node, we return the height of the current node in DFS recursion. When the sub tree of the current node (inclusive) is balanced, the function dfsHeight() returns a non-negative value as the height. Otherwise -1 is returned. According to the leftHeight and rightHeight of the two children, the parent node could check if the sub tree is balanced, and decides its return value.
    
    class solution {
    public:
    int dfsHeight (TreeNode *root) {
            if (root == NULL) return 0;
    
            int leftHeight = dfsHeight (root -> left);
            if (leftHeight == -1) return -1;
            int rightHeight = dfsHeight (root -> right);
            if (rightHeight == -1) return -1;
    
            if (abs(leftHeight - rightHeight) > 1)  return -1;
            return max (leftHeight, rightHeight) + 1;
        }
        bool isBalanced(TreeNode *root) {
            return dfsHeight (root) != -1;
        }
    };
    
    In this bottom up approach, each node in the tree only need to be accessed once. Thus the time complexity is O(N), better than the first solution.
    



    class Solution {
    public:
        bool isBalanced(TreeNode *root) {
            // recursion
            if (!root) return true;
            int l = maxDepth(root->left);
            int n = maxDepth(root->right);
            if (abs(l - n) <= 1)
                return isBalanced(root->left) && isBalanced(root->right);
            else
                return false;
        }
    
        int maxDepth(TreeNode* root)
        {
            if (!root)
                return 0;
            return 1 + max(maxDepth(root->left), maxDepth(root->right));
        }
    };
    



    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     struct TreeNode *left;
     *     struct TreeNode *right;
     * };
     */
    
    int checkBalanceAndDepth(struct TreeNode* node, bool *isBalanced)
    {
        int leftDepth = node->left == NULL? 0 : checkBalanceAndDepth(node->left, isBalanced);
        if(!*isBalanced)
        {
            return -1;
        }
        int rightDepth = node->right == NULL? 0 :checkBalanceAndDepth(node->right, isBalanced);
        if(!*isBalanced)
        {
            return -1;
        }
        int diff = leftDepth - rightDepth;
        *isBalanced = (diff == -1 || diff == 0 || diff == 1);
        return leftDepth > rightDepth? leftDepth + 1 : rightDepth + 1;
    }
    bool isBalanced(struct TreeNode* root) {
        if(root == NULL) return true;
        bool balanced = true;
        checkBalanceAndDepth(root, &balanced);
        return balanced;
    }
    


    def depth(self,root):
            if root == None:
                return 0
            else:
                return max(self.depth(root.left), self.depth(root.right))+1
    
    
    
        def isBalanced(self, root):
            if root == None:
                return True
            n1=self.depth(root.left)
            n2=self.depth(root.right)
            if ((n1-n2) in range(-1,2)) and self.isBalanced(root.left) and self.isBalanced(root.right):
                return True
            else:
                return False
    


    
  • 相关阅读:
    Understanding CMS GC Logs--转载
    Understanding G1 GC Logs--转载
    gcview使用
    kafka源码分析之一server启动分析
    电商网站的初期技术选型--转
    An In-Depth Look at the HBase Architecture--转载
    Maven报错Missing artifact jdk.tools:jdk.tools:jar:1.7--转
    定时任务调度系统设计
    spark源码解析之scala基本语法
    Searching with regular sentences will only get you so far – if you need to find something a bit tricky turn to these advanced yet simple methods--转
  • 原文地址:https://www.cnblogs.com/wangyaning/p/7853947.html
Copyright © 2011-2022 走看看