zoukankan      html  css  js  c++  java
  • hdoj1584 蜘蛛牌 (区间型动态规划)

    hdoj1584

    分析:

    f[i][j] 表示 把一串牌 牌 i 到 j 摞为一摞时 所花费最少的步数。

    d[i][j] 表示把牌 i 挪到牌 j 上时需要走的步数(最初给的状态)。

    以一串牌 3~8 为例, 我们需要把牌 3 放到牌 4 上 , 而在最优的移动方案下, 牌 4 的位置不确定, 所以我们枚举牌 4 所在的位置(因为一共10张牌, 枚举是可以的) 。 得出状态转移方程 : f[3][8] = min(f[3][8], f[4][k] + f[k][8] + d[3][k]); ( 4 <= k <= 8) f[i][j] = min (f[i][j], f[i+1][k] + f[k][j] + d[i][k]); 

    举个例子: 牌的初始顺序为 1, 4, 6, 8, 3, 2, 5, 7, 9, 10 
    求f[1][4] 时。 最有顺序应该是 : 先把牌 2 移到 牌 3 上, 把牌 2~3 移到牌 4 上。 最后 把牌 1 移到 牌 2 上。 而此时牌 2 已经在 牌4 的位置上了(f[1][4] = f[2][4] + f[4][4] +  d[1][4] = 5)。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string.h>
    #include<algorithm>
    #include<math.h>
    using namespace std;
    
    int t, a[15], d[15][15], f[15][15];
    void dp()
    {
        for(int i = 0; i < 10; i++)//所求的区间不断增大, 先求距离小的区间, 得出最优子问题解
        {
            for(int j = 1; j <= 10; j++)//所求将一串牌 j 到 i+j 摞成一摞时最小步数。 
            {
                if(i + j > 10) continue;
                for(int k = j + 1; k <= i + j; k++)//枚举上一张牌所在的位置
                    f[j][i+j] = min(f[j][i+j], f[j+1][k] + f[k][i+j] + d[j][k]);
            }
        }
    }
    void Init()
    {
        for(int i = 1; i <= 10; i++)
            scanf("%d", &a[i]);
        memset(d, 0, sizeof(d));
        for(int i = 1; i <= 10; i++)//将所有距离预处理下
        {
            for(int j = 1; j <= 10; j++)
            {
                int x = a[i], y = a[j];
                d[x][y] = abs(i - j);
                d[y][x] = d[x][y];
            }
        }
    }
    int main()
    {
        cin >> t;
        while(t--)
        {
            for(int i = 1; i <= 10; i++)
            {
                for(int j = 1; j <= 10; j++)
                {
                    f[i][j] = 10e8;
                    if(i == j)
                        f[i][j] = 0;
                }
            }
            Init();
            dp();
            printf("%d
    ", f[1][10]);
        }
        return 0;
    }
  • 相关阅读:
    一个周末掌握IT前沿技术之node.js篇<六>:Node.js与客户端模板引擎
    一个周末掌握IT前沿技术之node.js篇<四>:Node.js与Restful API
    一个周末掌握IT前沿技术之node.js篇<三>:Node.js与服务端模板引擎
    添加dom节点及优化
    CSS琐碎[1]
    兼容处理集合
    Dom优化
    apply函数应用
    javascript的slice()与splice()方法
    鼠标滚轮插件
  • 原文地址:https://www.cnblogs.com/wd-one/p/4564681.html
Copyright © 2011-2022 走看看