zoukankan      html  css  js  c++  java
  • Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) C Andryusha and Colored Balloons

    地址:http://codeforces.com/contest/782/problem/C

    题目:

    C. Andryusha and Colored Balloons
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Andryusha goes through a park each day. The squares and paths between them look boring to Andryusha, so he decided to decorate them.

    The park consists of n squares connected with (n - 1) bidirectional paths in such a way that any square is reachable from any other using these paths. Andryusha decided to hang a colored balloon at each of the squares. The baloons' colors are described by positive integers, starting from 1. In order to make the park varicolored, Andryusha wants to choose the colors in a special way. More precisely, he wants to use such colors that if ab and c are distinct squares that a and b have a direct path between them, and b and c have a direct path between them, then balloon colors on these three squares are distinct.

    Andryusha wants to use as little different colors as possible. Help him to choose the colors!

    Input

    The first line contains single integer n (3 ≤ n ≤ 2·105) — the number of squares in the park.

    Each of the next (n - 1) lines contains two integers x and y (1 ≤ x, y ≤ n) — the indices of two squares directly connected by a path.

    It is guaranteed that any square is reachable from any other using the paths.

    Output

    In the first line print single integer k — the minimum number of colors Andryusha has to use.

    In the second line print n integers, the i-th of them should be equal to the balloon color on the i-th square. Each of these numbers should be within range from 1 to k.

    Examples
    input
    3
    2 3
    1 3
    output
    3
    1 3 2
    input
    5
    2 3
    5 3
    4 3
    1 3
    output
    5
    1 3 2 5 4
    input
    5
    2 1
    3 2
    4 3
    5 4
    output
    3
    1 2 3 1 2
    Note

    In the first sample the park consists of three squares: 1 → 3 → 2. Thus, the balloon colors have to be distinct.

    Illustration for the first sample.

    In the second example there are following triples of consequently connected squares:

    • 1 → 3 → 2
    • 1 → 3 → 4
    • 1 → 3 → 5
    • 2 → 3 → 4
    • 2 → 3 → 5
    • 4 → 3 → 5
    We can see that each pair of squares is encountered in some triple, so all colors have to be distinct.
    Illustration for the second sample.

    In the third example there are following triples:

    • 1 → 2 → 3
    • 2 → 3 → 4
    • 3 → 4 → 5
    We can see that one or two colors is not enough, but there is an answer that uses three colors only.
    Illustration for the third sample.
    思路:dfs一遍即可。
     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define MP make_pair
     6 #define PB push_back
     7 typedef long long LL;
     8 typedef pair<int,int> PII;
     9 const double eps=1e-8;
    10 const double pi=acos(-1.0);
    11 const int K=2e5+7;
    12 const int mod=1e9+7;
    13 
    14 int n,ans,col[K],vis[K];
    15 vector<int>mp[K];
    16 
    17 void dfs(int x,int f)
    18 {
    19     for(int i=0,t=1;i<mp[x].size();i++)
    20     if(mp[x][i]!=f)
    21     {
    22         while(t==col[x]||t==col[f])t++;
    23         col[mp[x][i]]=t++;
    24     }
    25     for(int i=0;i<mp[x].size();i++)
    26     if(mp[x][i]!=f)
    27         dfs(mp[x][i],x);
    28 }
    29 int main(void)
    30 {
    31     cin>>n;
    32     for(int i=1,x,y;i<n;i++)
    33         scanf("%d%d",&x,&y),mp[x].PB(y),mp[y].PB(x);
    34     col[1]=1;
    35     dfs(1,0);
    36     for(int i=1;i<=n;i++)
    37         vis[col[i]]=1;
    38     for(int i=1;i<=n;i++)
    39         ans+=vis[i];
    40     cout<<ans<<endl;
    41     for(int i=1;i<=n;i++)
    42         printf("%d ",col[i]);
    43     return 0;
    44 }

     

  • 相关阅读:
    java8
    Python isinstance()
    Python3 File next()
    np.array() 与 np.mat() 比较
    np.nonzero()
    np.dot()
    算法之归并排序的应用 —— 小和问题以及逆序对问题
    递归过程以及递归master公式
    算法之异或运算及其应用
    算法之二分法及其应用
  • 原文地址:https://www.cnblogs.com/weeping/p/6516442.html
Copyright © 2011-2022 走看看