本次试验基于opencv2.4.5版本中自带的一个sample。其主要过程是,首先设置好参数,然后用函数pyrMeanShiftFiltering()对输入的图像进行分割。分割后的结果保存在该函数的第二个参数即输出图像中,最后根据该分割图像的特点用floodFill()函数对其分割的结果用不同的颜色进行填充。
实现代码如下:
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
using namespace cv;
using namespace std;
/*static void help(char** argv)
{
cout << "
Demonstrate mean-shift based color segmentation in spatial pyramid.
"
<< "Call:
" << argv[0] << " image
"
<< "This program allows you to set the spatial and color radius
"
<< "of the mean shift window as well as the number of pyramid reduction levels explored
"
<< endl;
}*/
//This colors the segmentations
static void floodFillPostprocess( Mat& img, const Scalar& colorDiff=Scalar::all(1) )
{
CV_Assert( !img.empty() );
RNG rng = theRNG();
Mat mask( img.rows+2, img.cols+2, CV_8UC1, Scalar::all(0) );
for( int y = 0; y < img.rows; y++ )
{
for( int x = 0; x < img.cols; x++ )
{
if( mask.at<uchar>(y+1, x+1) == 0 )
{
Scalar newVal( rng(256), rng(256), rng(256) );
floodFill( img, mask, Point(x,y), newVal, 0, colorDiff, colorDiff );
}
}
}
}
string winName = "meanshift";
int spatialRad, colorRad, maxPyrLevel;
Mat img, res;
static void meanShiftSegmentation( int, void* )
{
cout << "spatialRad=" << spatialRad << "; "
<< "colorRad=" << colorRad << "; "
<< "maxPyrLevel=" << maxPyrLevel << endl;
//调用meanshift图像金字塔进行分割
pyrMeanShiftFiltering( img, res, spatialRad, colorRad, maxPyrLevel );
floodFillPostprocess( res, Scalar::all(2) );
imshow( "res", res );
}
int main(int argc, char** argv)
{
/*if( argc !=2 )
{
help(argv);
return -1;
}*/
img = imread("stuff.jpg");
if( img.empty() )
return -1;
spatialRad = 10;
colorRad = 20;
maxPyrLevel = 1;
namedWindow( "img", CV_WINDOW_AUTOSIZE );
namedWindow( "res", CV_WINDOW_AUTOSIZE );
createTrackbar( "spatialRad", "res", &spatialRad, 80, meanShiftSegmentation );
createTrackbar( "colorRad", "res", &colorRad, 60, meanShiftSegmentation );
createTrackbar( "maxPyrLevel", "res", &maxPyrLevel, 5, meanShiftSegmentation );
meanShiftSegmentation(0, 0);
imshow("img",img);
imshow("res",img);
waitKey();
return 0;
}
参考链接:http://www.cnblogs.com/tornadomeet/archive/2012/06/06/2538695.html