zoukankan      html  css  js  c++  java
  • 基于python的OpenCV图像1

    1. 读入图片并显示

    import cv2
    
    img = cv2.imread("longmao.jpg")
    cv2.imshow("longmao", img)
    cv2.waitKey(0) #等待按键,0表示永久等待
    cv2.destroyAllWindows() #完成之后销毁窗体
    

    2. RGB通道分离

    基于numpy数组的方法

    r = img[:, :, 2]
    g = img[:, :, 1]
    b = img[:, :, 0]
    

    注意:OpenCV读取的顺序是BGR。

    **基于OpenCV的RGB通道分离

    b, g, r = cv2.split(img) #得到三个通道的值
    b = cv2.split(img)[0]
    

    3. RGB通道分离

    img2 = cv2.merge([b, g, r])
    

    4. 单像素处理

    img[9, 9, 2] #通过数组索引的方式获取某个像素值,
    #获取第10行,第10列(从0开始)的单独R颜色分量
    

    5. 遍历图像

    img = cv2.imread("longmao.jpg")
    img2 = np.zeros(img.shape)
    for i in range(img.shape[0]):
    	for j in range(img.shape[1]):
    		img2[i, j, 0] = img[i, j, 0] #b分量
    		#img2[i, j, 1] = img[i, j, 1] #g分量
    		#img2[i, j, 2] = img[i, j, 3] #R分量
    		#img2[i, j] = cv2.merge([img2[i, j, 0], img2[i, j, 1], img2[i, j, 2]])
    cv2.imshow("copy", img2)
    cv2.waitKey(0)
    cv2.destroyAllWindows() #完成之后销毁窗体
    

    图片的蓝色分量显示

    5. 给图片添加椒盐噪声

    import numpy as np
    import cv2
    
    
    def addPepperAndSalt(img, n):
        img2 = img
        for i in range(n):
            x = int(np.random.random() * img.shape[0])
            y = int(np.random.random() * img.shape[1])
            img2[x, y, 0] = 255
            img2[x, y, 1] = 255
            img2[x, y, 2] = 255
        return img2
    
    
    img = cv2.imread("longmao.jpg")
    img2 = addPepperAndSalt(img, 5000)
    cv2.imshow("salt and pepper", img2)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    注:np.random.random():返回[0.0, 1)的随机数,默认是一个,括号里面可以选返回随机数的数量

    6. 添加椒盐噪声进阶版

    import cv2
    import numpy as np
    
    def peppersalt(img, n, m):
        """
        Add peppersalt to image
        :param img: the image you want to add noise
        :param n: the total number of noise (0 <= n <= width*height)
        :param m: different mode
        m=1:add only white noise in whole image
        m=2:add only black noise in whole image
        m=3:add black and white noise in whole image
        m=4:add gray scale noise range from 0 to 255
        m=5:add color noise in whole image,RGB is combined randomly with every channel ranges from 0 to 255
        :return: the processed image
        """
        img2 = img
        if m == 1:
            for i in range(n):
                x = int(np.random.random() * img.shape[0])
                y = int(np.random.random() * img.shape[1])
                img2[x, y, 0] = 255 #添加白色噪声
                img2[x, y, 1] = 255
                img2[x, y, 2] = 255
        elif m == 2:
            for i in range(n):
                x = int(np.random.random() * img.shape[0])
                y = int(np.random.random() * img.shape[1])
                img2[x, y, 0] = 0 #黑色
                img2[x, y, 1] = 0
                img2[x, y, 2] = 0
        elif m == 3:
            for i in range(n):
                x = int(np.random.random() * img.shape[0])
                y = int(np.random.random() * img.shape[1])
                flag = np.random.random() * 255 #随机添加白色或黑色
                if flag > 128:
                    img2[x, y, 0] = 255
                    img2[x, y, 1] = 255
                    img2[x, y, 2] = 255
                else:
                    img2[x, y, 0] = 0
                    img2[x, y, 1] = 0
                    img2[x, y, 2] = 0
        elif m == 4:
            for i in range(n):
                x = int(np.random.random() * img.shape[0])
                y = int(np.random.random() * img.shape[1])
                flag = int(np.random.random() * 255) #随机颜色
                img2[x, y, 0] = flag
                img2[x, y, 1] = flag
                img2[x, y, 2] = flag
        elif m == 5:
            for i in range(n):
                x = int(np.random.random() * img.shape[0])
                y = int(np.random.random() * img.shape[1])
                f1 = int(np.random.random() * 255) #彩色
                f2 = int(np.random.random() * 255)
                f3 = int(np.random.random() * 255)
                img2[x, y, 0] = f1
                img2[x, y, 1] = f2
                img2[x, y, 2] = f3
        return img2
    
    if __name__ == "__main__":
    	img = cv2.imread("longmao.jpg")
    	img = peppersalt(img, 500, 5)
    	cv2.imshow("salt and pepper", img)
    	cv2.waitKey(0)
    	cv2.destroyAllWindows()
    

    7. 实现下雪demo

    def snow2pic(img, n):
    	"""
    	
    	:param img: input a rgb picture
    	:param n: density of the snow
    	:return: the pic with snow in the top
    	"""
    	#length, width = img.shape
    	#top_length = length * 0.35
    	for i in range(n):
    		x = int(np.random.random() * img.shape[0] * 0.35)
    		y = int(np.random.random() * img.shape[1])
    		img[x, y, 0] = 255  # 添加白色噪声
    		img[x, y, 1] = 255
    		img[x, y, 2] = 255
    	for i in range(200):
    		x = int(np.random.random() * img.shape[0] * 0.8)
    		y = int(np.random.random() * img.shape[1])
    		img[x, y, 0] = 255  # 添加白色噪声
    		img[x, y, 1] = 255
    		img[x, y, 2] = 255
    	return img
    	
    	
    if __name__ == "__main__":
    	img = cv2.imread("longmao.jpg")
    	img = snow2pic(img, 400)
    	cv2.imshow("salt and pepper", img)
    	cv2.waitKey(0)
    	cv2.destroyAllWindows()
    
  • 相关阅读:
    jQuery插件开发之定宽输出
    全国所有省市县地理坐标Json格式
    diff/merge configuration in TFS
    How to accelerate your VPC 2007
    TechNet Magazine/TechNet杂志
    net helpmsg get error message for error id in cmd script
    devenv.exe /DebugExe debug unitcase
    ZoomIt for demo
    diskpart to deal with driver letter changed after reboot in Virtual Machine
    几个关于web开发资源的站点
  • 原文地址:https://www.cnblogs.com/wemo/p/10568027.html
Copyright © 2011-2022 走看看