zoukankan      html  css  js  c++  java
  • [poj]1050 To the Max dp

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

    和最大连续子串和类似,可以把二维的转化为一维,将i行到j行的各列数分别相加,求最大连续子串和即可。
    同时可利用前缀和,sum[i][j]表示第j列前i行相加的和,i从1开始,则i-j行相加的和为sum[j][k]-sum[i-1][k]
    #include <iostream>
    #include <stdio.h>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    #define INF 0x3f3f3f3f
    int a[110][110];
    int t[110], dp[110];
    int sum[110][110];
    
    int n;
    
    int sovle()
    {
        int ans = -INF;
        for (int i = 1; i <= n; i++) {
            for (int j = i; j <= n; j++) {
    
                int Max;
                dp[1] = sum[j][1] - sum[i-1][1];
                for (int k = 1; k <= n; k++) {
                    int temp = sum[j][k]-sum[i-1][k];
                    dp[k] = max(dp[k-1]+temp, temp);
                }
                Max = *max_element(dp+1, dp+n+1);
                if (Max > ans)
                    ans = Max;
            }
        }
        return ans;
    }
    
    int main()
    {
        //freopen("1.txt", "r", stdin);
        scanf("%d", &n);
        memset(sum, 0, sizeof(sum));
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++) {
                scanf("%d", &a[i][j]);
                sum[i][j] = sum[i-1][j] + a[i][j];
            }
        printf("%d
    ", sovle());
    
        return 0;
    }
     
  • 相关阅读:
    机器学习 xgboost 笔记
    leetcode python 042收集雨水
    leetcode python 041首个缺失正数
    leetcode python 037 求解数独
    leetcode python 033 旋转数组查找
    jquery练习
    前端学习课件
    前端CSS
    MySQL_总目录
    MySQL之索引原理与慢查询优化
  • 原文地址:https://www.cnblogs.com/whileskies/p/7191428.html
Copyright © 2011-2022 走看看