zoukankan      html  css  js  c++  java
  • mxnet实战系列(一)入门与跑mnist数据集

    最近在摸mxnet和tensorflow。两个我都搭起来了。tensorflow跑了不少代码,总的来说用得比较顺畅,文档很丰富,api熟悉熟悉写代码没什么问题。

    今天把两个平台做了一下对比。同是跑mnist,tensorflow 要比mxnet 慢一二十倍。mxnet只需要半分钟,tensorflow跑了13分钟。

    在mxnet中如何开跑?

    cd /mxnet/example/image-classification
    python train_mnist.py

    我用的是最新的mxnet版本。运行脚本它会自动下载数据集。
    然后刷刷刷的刷屏了。
    我们来看看这个脚本如何写的,从而建立mxnet编程思路:
    import find_mxnet

    import mxnet as mx
    import argparse
    import os, sys
    import train_model

    def _download(data_dir):
        if not os.path.isdir(data_dir):
            os.system("mkdir " + data_dir)
        os.chdir(data_dir)
        if (not os.path.exists('train-images-idx3-ubyte')) or
           (not os.path.exists('train-labels-idx1-ubyte')) or
           (not os.path.exists('t10k-images-idx3-ubyte')) or
           (not os.path.exists('t10k-labels-idx1-ubyte')):
            os.system("wget http://data.dmlc.ml/mxnet/data/mnist.zip")
            os.system("unzip -u mnist.zip; rm mnist.zip")
        os.chdir("..")

    def get_loc(data, attr={'lr_mult':'0.01'}):
        """
        the localisation network in lenet-stn, it will increase acc about more than 1%,
        when num-epoch >=15
        """
        loc = mx.symbol.Convolution(data=data, num_filter=30, kernel=(5, 5), stride=(2,2))
        loc = mx.symbol.Activation(data = loc, act_type='relu')
        loc = mx.symbol.Pooling(data=loc, kernel=(2, 2), stride=(2, 2), pool_type='max')
        loc = mx.symbol.Convolution(data=loc, num_filter=60, kernel=(3, 3), stride=(1,1), pad=(1, 1))
        loc = mx.symbol.Activation(data = loc, act_type='relu')
        loc = mx.symbol.Pooling(data=loc, global_pool=True, kernel=(2, 2), pool_type='avg')
        loc = mx.symbol.Flatten(data=loc)
        loc = mx.symbol.FullyConnected(data=loc, num_hidden=6, name="stn_loc", attr=attr)
        return loc

    def get_mlp():
        """
        multi-layer perceptron
        """
        data = mx.symbol.Variable('data')
        fc1  = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
        act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu")
        fc2  = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64)
        act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu")
        fc3  = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10)
        mlp  = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
        return mlp

    def get_lenet(add_stn=False):
        """
        LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick
        Haffner. "Gradient-based learning applied to document recognition."
        Proceedings of the IEEE (1998)
        """
        data = mx.symbol.Variable('data')
        if(add_stn):
            data = mx.sym.SpatialTransformer(data=data, loc=get_loc(data), target_shape = (28,28),
                                             transform_type="affine", sampler_type="bilinear")
        # first conv
        conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20)
        tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh")
        pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max",
                                  kernel=(2,2), stride=(2,2))
        # second conv
        conv2 = mx.symbol.Convolution(data=pool1, kernel=(5,5), num_filter=50)
        tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh")
        pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max",
                                  kernel=(2,2), stride=(2,2))
        # first fullc
        flatten = mx.symbol.Flatten(data=pool2)
        fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
        tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh")
        # second fullc
        fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=10)
        # loss
        lenet = mx.symbol.SoftmaxOutput(data=fc2, name='softmax')
        return lenet

    def get_iterator(data_shape):
        def get_iterator_impl(args, kv):
            data_dir = args.data_dir
            if '://' not in args.data_dir:
                _download(args.data_dir)
            flat = False if len(data_shape) == 3 else True

            train           = mx.io.MNISTIter(
                image       = data_dir + "train-images-idx3-ubyte",
                label       = data_dir + "train-labels-idx1-ubyte",
                input_shape = data_shape,
                batch_size  = args.batch_size,
                shuffle     = True,
                flat        = flat,
                num_parts   = kv.num_workers,
                part_index  = kv.rank)

            val = mx.io.MNISTIter(
                image       = data_dir + "t10k-images-idx3-ubyte",
                label       = data_dir + "t10k-labels-idx1-ubyte",
                input_shape = data_shape,
                batch_size  = args.batch_size,
                flat        = flat,
                num_parts   = kv.num_workers,
                part_index  = kv.rank)

            return (train, val)
        return get_iterator_impl

    def parse_args():
        parser = argparse.ArgumentParser(description='train an image classifer on mnist')
        parser.add_argument('--network', type=str, default='mlp',
                            choices = ['mlp', 'lenet', 'lenet-stn'],
                            help = 'the cnn to use')
        parser.add_argument('--data-dir', type=str, default='mnist/',
                            help='the input data directory')
        parser.add_argument('--gpus', type=str,
                            help='the gpus will be used, e.g "0,1,2,3"')
        parser.add_argument('--num-examples', type=int, default=60000,
                            help='the number of training examples')
        parser.add_argument('--batch-size', type=int, default=128,
                            help='the batch size')
        parser.add_argument('--lr', type=float, default=.1,
                            help='the initial learning rate')
        parser.add_argument('--model-prefix', type=str,
                            help='the prefix of the model to load/save')
        parser.add_argument('--save-model-prefix', type=str,
                            help='the prefix of the model to save')
        parser.add_argument('--num-epochs', type=int, default=10,
                            help='the number of training epochs')
        parser.add_argument('--load-epoch', type=int,
                            help="load the model on an epoch using the model-prefix")
        parser.add_argument('--kv-store', type=str, default='local',
                            help='the kvstore type')
        parser.add_argument('--lr-factor', type=float, default=1,
                            help='times the lr with a factor for every lr-factor-epoch epoch')
        parser.add_argument('--lr-factor-epoch', type=float, default=1,
                            help='the number of epoch to factor the lr, could be .5')
        return parser.parse_args()


    if __name__ == '__main__':
        args = parse_args()


        if args.network == 'mlp':
            data_shape = (784, )
            net = get_mlp()
        elif args.network == 'lenet-stn':
            data_shape = (1, 28, 28)
            net = get_lenet(True)
        else:
            data_shape = (1, 28, 28)
            net = get_lenet()

        # train
        train_model.fit(args, net, get_iterator(data_shape))

    先看Main函数,就是读配置参数,读网络结构,包括设置数据的大小,然后就是调用已有的包train_model。然后传入这之前设置的三个参数。就开始训练了。
    编程架构也蛮清晰的。模块化也搞的好。
    接着看看参数设置问题。参数导入了很多配置文件,基本上caffe中的Proto都在这个里面设置了。包括数据集地址,批大小,学习率,损失函数,等等。然后看看读网络结构,
    读网络结构就是在一层一层的搭积木,根据之前读入的配置文件或者自己定义一些参数。搭好积木就开始训练了。
    caffe的一个缺点是不够灵活,毕竟不是自己写代码,只是写配置文件,总感觉受制于人。mxnet和tensorflow就比较方便,提供api,你可以按你的方式来调用和定义
    网络结构。总的说来,其实是后两个框架模块化做的好,提供底层的api支持你写自己的网络。caffe要自己写网络层的话还是很费劲的






  • 相关阅读:
    网口
    uart
    wwww
    ddr相关的配置经验
    嵌入式的指令集和寄存器
    协议栈
    《贝贝GO》服务条款
    《贝贝GO》隐私政策
    《贝贝GO》技术支持
    《王牌助理》隐私政策
  • 原文地址:https://www.cnblogs.com/whu-zeng/p/6010188.html
Copyright © 2011-2022 走看看