zoukankan      html  css  js  c++  java
  • 【NLP-2017】代码解读Transformer--Attention is All You Need

    目录

    1. 代码结构
    2. 调用模型前的设置模块(hparams.pyprepro.pydata_load.pyutils.py)
    3. transformer代码解析(modules.py , model.py
    4. 训练和测试(train.pyeval.pytest.py

    一、代码结构

    论文主题模块

    该实现【1】相对原始论文【2】有些许不同,比如为了方便使用了IWSLT 2016德英翻译的数据集,直接用的positional embedding,把learning rate一开始就调的很小等等,不过大同小异,主要模型没有区别.(另外注意最下方的outputs为上面翻译后的词或字)

    该实现一共包括以下几个文件

    介绍:

    download.sh:一个下载 IWSLT 2016 的脚本,需要在Linux环境下,或git bash插件内运行。

    hparams.py:该文件包含所有需要用到的参数

    prepro.py:从源文件中,提取生成源语言和目标语言的词汇文件。

    data_load.py: 该文件包含所有关于加载数据以及批量化数据的函数。

    model.py :encode和decode的模型架构,基本是调用到mudules的数据包

    modules.py :网络的模型组件,比如FFN,masked mutil-head attetion,LN,Positional Encoding等

    train.py :训练模型的代码,定义了模型,损失函数以及训练和保存模型的过程,包含了评估模型的效果

    test.py :测试模型

    utils.py:调用到的工具类代码,起到一些协助的作用

    二、调用模型前的设置模块(hparams.pyprepro.pydata_load.pyutils.py)

    2.1 hparams.py

    该实现所用到的所又的超参数都在这个文件里面。以下是该文件的所有代码:

    import argparse
    class Hparams:
        parser = argparse.ArgumentParser()
        # prepro
        parser.add_argument('--vocab_size', default=32000, type=int)
        # train
        ## files
        parser.add_argument('--train1', default='iwslt2016/segmented/train.de.bpe',
                                 help="german training segmented data")
        parser.add_argument('--train2', default='iwslt2016/segmented/train.en.bpe',
                                 help="english training segmented data")
        parser.add_argument('--eval1', default='iwslt2016/segmented/eval.de.bpe',
                                 help="german evaluation segmented data")
        parser.add_argument('--eval2', default='iwslt2016/segmented/eval.en.bpe',
                                 help="english evaluation segmented data")
        parser.add_argument('--eval3', default='iwslt2016/prepro/eval.en',
                                 help="english evaluation unsegmented data")
    
        ## vocabulary
        parser.add_argument('--vocab', default='iwslt2016/segmented/bpe.vocab',
                            help="vocabulary file path")
    
        # training scheme
        parser.add_argument('--batch_size', default=128, type=int)
        parser.add_argument('--eval_batch_size', default=128, type=int)
        parser.add_argument('--lr', default=0.0003, type=float, help="learning rate")
        parser.add_argument('--warmup_steps', default=4000, type=int)
        parser.add_argument('--logdir', default="log/1", help="log directory")
        parser.add_argument('--num_epochs', default=20, type=int)
        parser.add_argument('--evaldir', default="eval/1", help="evaluation dir")
    
        # model
        parser.add_argument('--d_model', default=512, type=int,
                            help="hidden dimension of encoder/decoder")
        parser.add_argument('--d_ff', default=2048, type=int,
                            help="hidden dimension of feedforward layer")
        parser.add_argument('--num_blocks', default=6, type=int,
                            help="number of encoder/decoder blocks")
        parser.add_argument('--num_heads', default=8, type=int,
                            help="number of attention heads")
        parser.add_argument('--maxlen1', default=100, type=int,
                            help="maximum length of a source sequence")
        parser.add_argument('--maxlen2', default=100, type=int,
                            help="maximum length of a target sequence")
        parser.add_argument('--dropout_rate', default=0.3, type=float)
        parser.add_argument('--smoothing', default=0.1, type=float,
                            help="label smoothing rate")
    
        # test
        parser.add_argument('--test1', default='iwslt2016/segmented/test.de.bpe',
                            help="german test segmented data")
        parser.add_argument('--test2', default='iwslt2016/prepro/test.en',
                            help="english test data")
        parser.add_argument('--ckpt', help="checkpoint file path")
        parser.add_argument('--test_batch_size', default=32, type=int)
        parser.add_argument('--testdir', default="test/1", help="test result dir")
    

    parser = argparse.ArgumentParser() parser.add_argument定义变量成为一种趋势;help就是该参数的解释,故基本能够理解参含义,这里挑几个介绍下:
    batch_size的大小以及初始学习速率还有日志的目录,batch_size 在后续代码中即所谓的N,参数中常会见到。最后定义了一些模型相关的参数,
    maxlen1/2为一句话里最大词的长度为100个,在其他代码中就用的是T来表示,你也可以根据自己的喜好将这个参数调大;
    num_epochs被设置为20,该参数表示所有出现次数少于num_epochs次的都会被当作UNK来处理;
    hidden_units设置为512,隐藏节点的个数;
    num_blocks:重复模块的数量,这里默认为6个
    num_heads:multi-head attention 中用到的切分的头的数量

    2.2 prepro.py

    根据iwslt2016的原始数据,做一个预处理,放到prepro和segment文件中。

    2.3 data_load.py

    词和序号的转换,源目的词列表,字符串转数字,迭代返回预估值,加载数据以及批量化数据的函数等。

    2.4 utils.py

    计算计算batches数量def calc_num_batches(total_num, batch_size),

    整数tensor转换成string tensor: def convert_idx_to_token_tensor(inputs, idx2token);

    处理转换输出def postprocess(hypotheses, idx2token);

    保存参数到路径def save_hparams(hparams, path)

    加载参数:def load_hparams(parser, path)

    保存有关变量的信息,例如它们的名称、形状和参数总数fpath:字符串。输出文件路径:def save_variable_specs(fpath)

    得到假设。num_batches、num_samples:标量。sess:对象张量:要获取的目标张量dict:idx2token字典def get_hypotheses(num_batches, num_samples, sess, tensor, dict):

    计算bleu(要调用perl文件,我windons进行了删除才跑过去):def calc_bleu(ref, translation)

    三、transformer代码解析(modules.py , model.py

    这是最为主要的部分

    3.1 modules.py

    3.1.1 layer normalization

    3.1.5 multihead_attention的子模块。归一化数据的一种方式,不过LN 是在每一个样本上计算均值和方差,有点类似CV用到的instance normalization而不是BN那种在批方向计算均值和方差!公式如下:

    具体代码如下,后面被用在很多模块中都有使用

    代码

    def ln(inputs, epsilon = 1e-8, scope="ln"):
        '''Applies layer normalization. See https://arxiv.org/abs/1607.06450.
        inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`.
        epsilon: A floating number. A very small number for preventing ZeroDivision Error.
        scope: Optional scope for `variable_scope`.
        Returns:
          A tensor with the same shape and data dtype as `inputs`.
        '''
        with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
            inputs_shape = inputs.get_shape()
            params_shape = inputs_shape[-1:]
            mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True)
            beta= tf.get_variable("beta", params_shape, initializer=tf.zeros_initializer())
            gamma = tf.get_variable("gamma", params_shape, initializer=tf.ones_initializer())
            normalized = (inputs - mean) / ( (variance + epsilon) ** (.5) )
            outputs = gamma * normalized + beta
        return outputs

    3.1.2 get_token_embeddings

    初始化嵌入向量,用矩阵表示,目前为[vocab_size, num_units]的矩阵,vocab_size为词的数量,num_units为embedding size,一般根据论文中的设置,为512

    代码

    def get_token_embeddings(vocab_size, num_units, zero_pad=True):
        '''Constructs token embedding matrix.
        Note that the column of index 0's are set to zeros.
        vocab_size: scalar. V.
        num_units: embedding dimensionalty. E.
        zero_pad: Boolean. If True, all the values of the first row (id = 0) should be constant zero
        To apply query/key masks easily, zero pad is turned on.
        Returns
        weight variable: (V, E)
        '''
        with tf.variable_scope("shared_weight_matrix"):
            embeddings = tf.get_variable('weight_mat',
                                       dtype=tf.float32,
                                       shape=(vocab_size, num_units),
                                       initializer=tf.contrib.layers.xavier_initializer())
            if zero_pad:
                embeddings = tf.concat((tf.zeros(shape=[1, num_units]),
                                        embeddings[1:, :]), 0)
        return embeddings

    3.1.3 scaled_dot_product_attention

    缩放的点积注意力机制,是 3.1.5 multihead_attention的子模块

    本文attention公式如上所示,和dot-product attention除了没有使用缩放因子,其他和这个一样。

    additive attention和dot-product(multi-plicative) attention是最常用的两个attention 函数。为何选择上面的呢?主要为了提升效率,兼顾性能

    效率:在实践中dot-product attention要快得多,而且空间效率更高。这是因为它可以使用高度优化的矩阵乘法代码来实现。

    性能:较小时,这两种方法性能表现的相近,当比较大时,addtitive attention表现优于 dot-product attention(点积在数量级上增长的幅度大,将softmax函数推向具有极小梯度的区域 )。所以加上因子拉平性能。

    代码

    def scaled_dot_product_attention(Q, K, V, key_masks,
                                     causality=False, dropout_rate=0.,
                                     training=True,
                                     scope="scaled_dot_product_attention"):
        '''See 3.2.1.
        Q: Packed queries. 3d tensor. [N, T_q, d_k].
        K: Packed keys. 3d tensor. [N, T_k, d_k].
        V: Packed values. 3d tensor. [N, T_k, d_v].
        key_masks: A 2d tensor with shape of [N, key_seqlen]
        causality: If True, applies masking for future blinding
        dropout_rate: A floating point number of [0, 1].
        training: boolean for controlling droput
        scope: Optional scope for `variable_scope`.
        '''
        with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
            d_k = Q.get_shape().as_list()[-1]
    
            # dot product
            outputs = tf.matmul(Q, tf.transpose(K, [0, 2, 1]))  # (N, T_q, T_k)
    
            # scale
            outputs /= d_k ** 0.5
    
            # key masking
            outputs = mask(outputs, key_masks=key_masks, type="key")
    
            # causality or future blinding masking
            if causality:
                outputs = mask(outputs, type="future")
    
            # softmax
            outputs = tf.nn.softmax(outputs)
            attention = tf.transpose(outputs, [0, 2, 1])
            tf.summary.image("attention", tf.expand_dims(attention[:1], -1))
    
            # # query masking
            # outputs = mask(outputs, Q, K, type="query")
    
            # dropout
            outputs = tf.layers.dropout(outputs, rate=dropout_rate, training=training)
    
            # weighted sum (context vectors)
            outputs = tf.matmul(outputs, V)  # (N, T_q, d_v)
    
        return outputs

    3.1.4 mask

    def mask(inputs, key_masks=None, type=None):
        """Masks paddings on keys or queries to inputs
        inputs: 3d tensor. (h*N, T_q, T_k)
        key_masks: 3d tensor. (N, 1, T_k)
        type: string. "key" | "future"
        e.g.,
        >> inputs = tf.zeros([2, 2, 3], dtype=tf.float32)
        >> key_masks = tf.constant([[0., 0., 1.],
                                    [0., 1., 1.]])
        >> mask(inputs, key_masks=key_masks, type="key")
        array([[[ 0.0000000e+00,  0.0000000e+00, -4.2949673e+09],
            [ 0.0000000e+00,  0.0000000e+00, -4.2949673e+09]],
           [[ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09],
            [ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09]],
           [[ 0.0000000e+00,  0.0000000e+00, -4.2949673e+09],
            [ 0.0000000e+00,  0.0000000e+00, -4.2949673e+09]],
           [[ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09],
            [ 0.0000000e+00, -4.2949673e+09, -4.2949673e+09]]], dtype=float32)
        """
        padding_num = -2 ** 32 + 1
        if type in ("k", "key", "keys"):
            key_masks = tf.to_float(key_masks)
            key_masks = tf.tile(key_masks, [tf.shape(inputs)[0] // tf.shape(key_masks)[0], 1]) # (h*N, seqlen)
            key_masks = tf.expand_dims(key_masks, 1)  # (h*N, 1, seqlen)
            outputs = inputs + key_masks * padding_num
        elif type in ("f", "future", "right"):
            diag_vals = tf.ones_like(inputs[0, :, :])  # (T_q, T_k)
            tril = tf.linalg.LinearOperatorLowerTriangular(diag_vals).to_dense()  # (T_q, T_k)
            future_masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(inputs)[0], 1, 1])  # (N, T_q, T_k)
    
            paddings = tf.ones_like(future_masks) * padding_num
            outputs = tf.where(tf.equal(future_masks, 0), paddings, inputs)
        else:
            print("Check if you entered type correctly!")
        return outputs

    3.1.5 multihead_attention(重要组件)

    该部分代码包含了整体框架中的这个部分:

    主要公式如下:

    代码:

    def multihead_attention(queries, keys, values, key_masks,
                            num_heads=8, 
                            dropout_rate=0,
                            training=True,
                            causality=False,
                            scope="multihead_attention"):
        '''Applies multihead attention. See 3.2.2
        queries: A 3d tensor with shape of [N, T_q, d_model].
        keys: A 3d tensor with shape of [N, T_k, d_model].
        values: A 3d tensor with shape of [N, T_k, d_model].
        key_masks: A 2d tensor with shape of [N, key_seqlen]
        num_heads: An int. Number of heads.
        dropout_rate: A floating point number.
        training: Boolean. Controller of mechanism for dropout.
        causality: Boolean. If true, units that reference the future are masked.
        scope: Optional scope for `variable_scope`.
            
        Returns
          A 3d tensor with shape of (N, T_q, C)  
        '''
        d_model = queries.get_shape().as_list()[-1]
        with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
            # Linear projections
            Q = tf.layers.dense(queries, d_model, use_bias=True)     # (N, T_q, d_model)
            K = tf.layers.dense(keys, d_model, use_bias=True)           # (N, T_k, d_model)
            V = tf.layers.dense(values, d_model, use_bias=True)        # (N, T_k, d_model)
            
            # Split and concat
            Q_ = tf.concat(tf.split(Q, num_heads, axis=2), axis=0)      # (h*N, T_q, d_model/h)
            K_ = tf.concat(tf.split(K, num_heads, axis=2), axis=0)       # (h*N, T_k, d_model/h)
            V_ = tf.concat(tf.split(V, num_heads, axis=2), axis=0)       # (h*N, T_k, d_model/h)
    
            # Attention
            outputs = scaled_dot_product_attention(Q_, K_, V_, key_masks, causality, dropout_rate, training)
    
            # Restore shape
            outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2 ) # (N, T_q, d_model)
                  
            # Residual connection
            outputs += queries
                  
            # Normalize
            outputs = ln(outputs)
     
        return outputs

    3.1.6 ff——feed forward(重要组件)

    除了attention子层之外,编码器和解码器中的每个层都包含一个完全连接的前馈网络,该网络分别相同地应用于每个位置。 该前馈网络包括两个线性变换,并在第一个的最后使用ReLU激活函数,公式表示如下:

    不同position的FFN是一样的,但是不同层是不同的。

    描述这种情况的另一种方式是两个内核大小为1的卷积。输入和输出的维度是,内层的维度=2048

    def ff(inputs, num_units, scope="positionwise_feedforward"):
        '''position-wise feed forward net. See 3.3
        inputs: A 3d tensor with shape of [N, T, C].
        num_units: A list of two integers.
        scope: Optional scope for `variable_scope`.
        Returns:
          A 3d tensor with the same shape and dtype as inputs
        '''
        with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
            # Inner layer
            outputs = tf.layers.dense(inputs, num_units[0], activation=tf.nn.relu)    #全连接层  相当于添加一个层
    
            # Outer layer
            outputs = tf.layers.dense(outputs, num_units[1])
    
            # Residual connection
            outputs += inputs
            
            # Normalize
            outputs = ln(outputs)
        
        return outputs

    3.1.7 label_smoothing

    这部分就相当于是使矩阵中的数进行平滑处理。把0改成一个很小的数,把1改成一个比较接近于1的数。论文中说这虽然会使模型的学习更加不确定性,但是提高了准确率和BLEU score。(论文中的5.4部分)

    def label_smoothing(inputs, epsilon=0.1):
        '''Applies label smoothing. See 5.4 and https://arxiv.org/abs/1512.00567.
        inputs: 3d tensor. [N, T, V], where V is the number of vocabulary.
        epsilon: Smoothing rate.    
        For example,
        ```
        import tensorflow as tf
        inputs = tf.convert_to_tensor([[[0, 0, 1], 
           [0, 1, 0],
           [1, 0, 0]],
          [[1, 0, 0],
           [1, 0, 0],
           [0, 1, 0]]], tf.float32)
        outputs = label_smoothing(inputs)
        
        with tf.Session() as sess:
            print(sess.run([outputs]))
        >>
        [array([[[ 0.03333334,  0.03333334,  0.93333334],
            [ 0.03333334,  0.93333334,  0.03333334],
            [ 0.93333334,  0.03333334,  0.03333334]],
           [[ 0.93333334,  0.03333334,  0.03333334],
            [ 0.93333334,  0.03333334,  0.03333334],
            [ 0.03333334,  0.93333334,  0.03333334]]], dtype=float32)]   
        ```    
        '''
        V = inputs.get_shape().as_list()[-1] # number of channels
        return ((1-epsilon) * inputs) + (epsilon / V)

    3.1.8 positional_encoding(重要模块)

    该模块内如为:

    位置编码,论文中3.5的内容,公式如下

    其中pos是指当前词在句子中的位置,i是指向量中每个值的维度,位置编码的每个维度对应于正弦曲线。我们选择了这个函数,因为我们假设它允许模型容易地学习相对位置。

    def positional_encoding(inputs,
                            maxlen,
                            masking=True,
                            scope="positional_encoding"):
        '''Sinusoidal Positional_Encoding. See 3.5
        inputs: 3d tensor. (N, T, E)
        maxlen: scalar. Must be >= T
        masking: Boolean. If True, padding positions are set to zeros.
        scope: Optional scope for `variable_scope`.
        returns
        3d tensor that has the same shape as inputs.
        '''
        E = inputs.get_shape().as_list()[-1] # static
        N, T = tf.shape(inputs)[0], tf.shape(inputs)[1] # dynamic
        with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
            # position indices
            position_ind = tf.tile(tf.expand_dims(tf.range(T), 0), [N, 1]) # (N, T)
    
            # First part of the PE function: sin and cos argument
            position_enc = np.array([
                [pos / np.power(10000, (i-i%2)/E) for i in range(E)]
                for pos in range(maxlen)])
    
            # Second part, apply the cosine to even columns and sin to odds.
            position_enc[:, 0::2] = np.sin(position_enc[:, 0::2])  # dim 2i
            position_enc[:, 1::2] = np.cos(position_enc[:, 1::2])  # dim 2i+1
            position_enc = tf.convert_to_tensor(position_enc, tf.float32) # (maxlen, E)
    
            # lookup
            outputs = tf.nn.embedding_lookup(position_enc, position_ind)
    
            # masks
            if masking:
                outputs = tf.where(tf.equal(inputs, 0), inputs, outputs)
    
            return tf.to_float(outputs)

    3.1.9 noam_scheme

    学习率的衰减,在3.2的train(self, xs, ys)模块中会用到,代码如下:

    def noam_scheme(init_lr, global_step, warmup_steps=4000.):
        '''Noam scheme learning rate decay
        init_lr: initial learning rate. scalar.
        global_step: scalar.
        warmup_steps: scalar. During warmup_steps, learning rate increases
            until it reaches init_lr.
        '''
        step = tf.cast(global_step + 1, dtype=tf.float32)
        return init_lr * warmup_steps ** 0.5 * tf.minimum(step * warmup_steps ** -1.5, step ** -0.5)

    3.2 model.py

    3.2.1 导入包

    import tensorflow as tf
    from data_load import load_vocab
    from modules import get_token_embeddings, ff, positional_encoding, multihead_attention, label_smoothing, noam_scheme
    from utils import convert_idx_to_token_tensor
    from tqdm import tqdm
    import logging
    
    logging.basicConfig(level=logging.INFO)

    简单介绍:上面提到的大部分模块,基本都在这里用到。

    3.2.2 创建Transformer

    class Transformer:
        '''
        xs: tuple of
            x: int32 tensor. (N, T1)
            x_seqlens: int32 tensor. (N,)
            sents1: str tensor. (N,)
        ys: tuple of
            decoder_input: int32 tensor. (N, T2)
            y: int32 tensor. (N, T2)
            y_seqlen: int32 tensor. (N, )
            sents2: str tensor. (N,)
        training: boolean.
        '''
        def __init__(self, hp):
            self.hp = hp
            self.token2idx, self.idx2token = load_vocab(hp.vocab)
            self.embeddings = get_token_embeddings(self.hp.vocab_size, self.hp.d_model, zero_pad=True)

    类内函数encode部分:按照下图部分一步一步进行。

     def encode(self, xs, training=True):
            '''
            Returns
            memory: encoder outputs. (N, T1, d_model)
            '''
            with tf.variable_scope("encoder", reuse=tf.AUTO_REUSE):
                x, seqlens, sents1 = xs
    
                # src_masks
                src_masks = tf.math.equal(x, 0) # (N, T1)
    
                # embedding
                enc = tf.nn.embedding_lookup(self.embeddings, x) # (N, T1, d_model)
                enc *= self.hp.d_model**0.5 # scale
    
                enc += positional_encoding(enc, self.hp.maxlen1)
                enc = tf.layers.dropout(enc, self.hp.dropout_rate, training=training)
                ## Blocks
                for i in range(self.hp.num_blocks):   #上图中的N,这里默认设置为6
                    with tf.variable_scope("num_blocks_{}".format(i), reuse=tf.AUTO_REUSE):
                        # self-attention
                        enc = multihead_attention(queries=enc,
                                                  keys=enc,
                                                  values=enc,
                                                  key_masks=src_masks,
                                                  num_heads=self.hp.num_heads,
                                                  dropout_rate=self.hp.dropout_rate,
                                                  training=training,
                                                  causality=False)
                        # feed forward
                        enc = ff(enc, num_units=[self.hp.d_ff, self.hp.d_model])
            memory = enc
            return memory, sents1, src_masks

    类内函数decode部分:按照下图部分一步一步进行。

       

        def decode(self, ys, memory, src_masks, training=True):
            '''
            memory: encoder outputs. (N, T1, d_model)
            src_masks: (N, T1)
            Returns
            logits: (N, T2, V). float32.
            y_hat: (N, T2). int32
            y: (N, T2). int32
            sents2: (N,). string.
            '''
            with tf.variable_scope("decoder", reuse=tf.AUTO_REUSE):
                decoder_inputs, y, seqlens, sents2 = ys
    
                # tgt_masks
                tgt_masks = tf.math.equal(decoder_inputs, 0)  # (N, T2)
    
                # embedding
                dec = tf.nn.embedding_lookup(self.embeddings, decoder_inputs)  # (N, T2, d_model)
                dec *= self.hp.d_model ** 0.5  # scale
    
                dec += positional_encoding(dec, self.hp.maxlen2)
                dec = tf.layers.dropout(dec, self.hp.dropout_rate, training=training)
    
                # Blocks
                for i in range(self.hp.num_blocks):
                    with tf.variable_scope("num_blocks_{}".format(i), reuse=tf.AUTO_REUSE):
                        # Masked self-attention (Note that causality is True at this time)
                        dec = multihead_attention(queries=dec,
                                                  keys=dec,
                                                  values=dec,
                                                  key_masks=tgt_masks,
                                                  num_heads=self.hp.num_heads,
                                                  dropout_rate=self.hp.dropout_rate,
                                                  training=training,
                                                  causality=True,
                                                  scope="self_attention")
    
                        # Vanilla attention
                        dec = multihead_attention(queries=dec,
                                                  keys=memory,        #memory: encoder outputs.使用了图中左侧过来的部分
                                                  values=memory,
                                                  key_masks=src_masks,
                                                  num_heads=self.hp.num_heads,
                                                  dropout_rate=self.hp.dropout_rate,
                                                  training=training,
                                                  causality=False,
                                                  scope="vanilla_attention")
                        ### Feed Forward
                        dec = ff(dec, num_units=[self.hp.d_ff, self.hp.d_model])
    
            # Final linear projection (embedding weights are shared)
            weights = tf.transpose(self.embeddings)              # (d_model, vocab_size)
            logits = tf.einsum('ntd,dk->ntk', dec, weights)    # (N, T2, vocab_size)
            y_hat = tf.to_int32(tf.argmax(logits, axis=-1))
    
            return logits, y_hat, y, sents2

    模型训练部分

     def train(self, xs, ys):
            '''
            Returns
            loss: scalar.
            train_op: training operation
            global_step: scalar.
            summaries: training summary node
            '''
            # forward
            memory, sents1, src_masks = self.encode(xs)
            logits, preds, y, sents2 = self.decode(ys, memory, src_masks)
    
            # train scheme
            y_ = label_smoothing(tf.one_hot(y, depth=self.hp.vocab_size))
            ce = tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=y_)
            nonpadding = tf.to_float(tf.not_equal(y, self.token2idx["<pad>"]))  # 0: <pad>
            loss = tf.reduce_sum(ce * nonpadding) / (tf.reduce_sum(nonpadding) + 1e-7)
    
            global_step = tf.train.get_or_create_global_step()
            lr = noam_scheme(self.hp.lr, global_step, self.hp.warmup_steps)
            optimizer = tf.train.AdamOptimizer(lr)
            train_op = optimizer.minimize(loss, global_step=global_step)
    
            tf.summary.scalar('lr', lr)
            tf.summary.scalar("loss", loss)
            tf.summary.scalar("global_step", global_step)
    
            summaries = tf.summary.merge_all()
    
            return loss, train_op, global_step, summaries
    

     模型训验证部分

     def eval(self, xs, ys):
            '''Predicts autoregressively
            At inference, input ys is ignored.
            Returns
            y_hat: (N, T2)
            '''
            decoder_inputs, y, y_seqlen, sents2 = ys
    
            decoder_inputs = tf.ones((tf.shape(xs[0])[0], 1), tf.int32) * self.token2idx["<s>"]
            ys = (decoder_inputs, y, y_seqlen, sents2)
    
            memory, sents1, src_masks = self.encode(xs, False)
    
            logging.info("Inference graph is being built. Please be patient.")
            for _ in tqdm(range(self.hp.maxlen2)):
                logits, y_hat, y, sents2 = self.decode(ys, memory, src_masks, False)
                if tf.reduce_sum(y_hat, 1) == self.token2idx["<pad>"]: break
    
                _decoder_inputs = tf.concat((decoder_inputs, y_hat), 1)
                ys = (_decoder_inputs, y, y_seqlen, sents2)
    
            # monitor a random sample
            n = tf.random_uniform((), 0, tf.shape(y_hat)[0]-1, tf.int32)
            sent1 = sents1[n]
            pred = convert_idx_to_token_tensor(y_hat[n], self.idx2token)
            sent2 = sents2[n]
    
            tf.summary.text("sent1", sent1)
            tf.summary.text("pred", pred)
            tf.summary.text("sent2", sent2)
            summaries = tf.summary.merge_all()
    
            return y_hat, summaries

    四、训练和测试(train.pyeval.pytest.py

    4.1 train.py

    训练模型的代码,定义了模型,损失函数以及训练和保存模型的过程 包含了评估模型的效果

    # -*- coding: utf-8 -*-
    import tensorflow as tf
    
    from model import Transformer
    from tqdm import tqdm
    from data_load import get_batch
    from utils import save_hparams, save_variable_specs, get_hypotheses, calc_bleu
    import os
    from hparams import Hparams
    import math
    import logging
    logging.basicConfig(level=logging.INFO)
    
    logging.info("# hparams")
    hparams = Hparams()
    parser = hparams.parser
    hp = parser.parse_args()
    save_hparams(hp, hp.logdir)
    
    logging.info("# Prepare train/eval batches")
    train_batches, num_train_batches, num_train_samples = get_batch(hp.train1, hp.train2,
                                                 hp.maxlen1, hp.maxlen2,
                                                 hp.vocab, hp.batch_size,
                                                 shuffle=True)
    eval_batches, num_eval_batches, num_eval_samples = get_batch(hp.eval1, hp.eval2,
                                                 100000, 100000,
                                                 hp.vocab, hp.batch_size,
                                                 shuffle=False)
    
    # create a iterator of the correct shape and type
    iter = tf.data.Iterator.from_structure(train_batches.output_types, train_batches.output_shapes)
    xs, ys = iter.get_next()
     #迭代器需要初始化
    train_init_op = iter.make_initializer(train_batches)
    eval_init_op = iter.make_initializer(eval_batches)
    
    logging.info("# Load model")
    m = Transformer(hp)
    loss, train_op, global_step, train_summaries = m.train(xs, ys)
    y_hat, eval_summaries = m.eval(xs, ys)
    # y_hat = m.infer(xs, ys)
    
    logging.info("# Session")
    saver = tf.train.Saver(max_to_keep=hp.num_epochs)
    with tf.Session() as sess:
        ckpt = tf.train.latest_checkpoint(hp.logdir)
        if ckpt is None:
            logging.info("Initializing from scratch")
            sess.run(tf.global_variables_initializer())
            save_variable_specs(os.path.join(hp.logdir, "specs"))
        else:
            saver.restore(sess, ckpt)
    
        summary_writer = tf.summary.FileWriter(hp.logdir, sess.graph)   #定义一个写入summary的目标文件,hp.logdir为写入文件地址
    
        sess.run(train_init_op)
        total_steps = hp.num_epochs * num_train_batches
        _gs = sess.run(global_step)
        for i in tqdm(range(_gs, total_steps+1)):
            _, _gs, _summary = sess.run([train_op, global_step, train_summaries])
            epoch = math.ceil(_gs / num_train_batches)
            summary_writer.add_summary(_summary, _gs)#调用train_writer的add_summary方法将训练过程以及训练步数保存
    
            if _gs and _gs % num_train_batches == 0:
                logging.info("epoch {} is done".format(epoch))
                _loss = sess.run(loss) # train loss
    
                logging.info("# test evaluation")
                _, _eval_summaries = sess.run([eval_init_op, eval_summaries])
                summary_writer.add_summary(_eval_summaries, _gs)
    
                logging.info("# get hypotheses")
                hypotheses = get_hypotheses(num_eval_batches, num_eval_samples, sess, y_hat, m.idx2token)
    
                logging.info("# write results")
                model_output = "iwslt2016_E%02dL%.2f" % (epoch, _loss)
                if not os.path.exists(hp.evaldir): os.makedirs(hp.evaldir)
                translation = os.path.join(hp.evaldir, model_output)
                with open(translation, 'w') as fout:
                    fout.write("
    ".join(hypotheses))
    
                logging.info("# calc bleu score and append it to translation")
                calc_bleu(hp.eval3, translation)
    
                logging.info("# save models")
                ckpt_name = os.path.join(hp.logdir, model_output)
                saver.save(sess, ckpt_name, global_step=_gs)
                logging.info("after training of {} epochs, {} has been saved.".format(epoch, ckpt_name))
    
                logging.info("# fall back to train mode")
                sess.run(train_init_op)
        summary_writer.close()
    logging.info("Done")

    4.2 test.py

    测试模型,若是windowns上跑模型,注意将最后两句计算Bleu部分注释掉。

    # -*- coding: utf-8 -*-
    
    import os
    import tensorflow as tf
    from data_load import get_batch
    from model import Transformer
    from hparams import Hparams
    from utils import get_hypotheses, calc_bleu, postprocess, load_hparams
    import logging
    
    logging.basicConfig(level=logging.INFO)
    logging.info("# hparams")
    hparams = Hparams()
    parser = hparams.parser
    hp = parser.parse_args()
    load_hparams(hp, hp.ckpt)
    
    logging.info("# Prepare test batches")
    test_batches, num_test_batches, num_test_samples  = get_batch(hp.test1, hp.test1,
                                                  100000, 100000,
                                                  hp.vocab, hp.test_batch_size,
                                                  shuffle=False)
    iter = tf.data.Iterator.from_structure(test_batches.output_types, test_batches.output_shapes)
    xs, ys = iter.get_next()
    
    test_init_op = iter.make_initializer(test_batches)
    
    logging.info("# Load model")
    m = Transformer(hp)
    y_hat, _ = m.eval(xs, ys)
    
    logging.info("# Session")
    with tf.Session() as sess:
        ckpt_ = tf.train.latest_checkpoint(hp.ckpt)
        ckpt = hp.ckpt if ckpt_ is None else ckpt_ # None: ckpt is a file. otherwise dir.
        saver = tf.train.Saver()
        saver.restore(sess, ckpt)
        sess.run(test_init_op)
    
        logging.info("# get hypotheses")
        hypotheses = get_hypotheses(num_test_batches, num_test_samples, sess, y_hat, m.idx2token)
    
        logging.info("# write results")
        model_output = ckpt.split("/")[-1]
        if not os.path.exists(hp.testdir): os.makedirs(hp.testdir)
        translation = os.path.join(hp.testdir, model_output)
        with open(translation, 'w') as fout:
            fout.write("
    ".join(hypotheses))
    
        logging.info("# calc bleu score and append it to translation")
        calc_bleu(hp.test2, translation)

    结果

    参考文献

    1】本次实现解读的代码:https://github.com/Kyubyong/transformer

    2】论文:https://arxiv.org/abs/1706.03762

    3】老版本代码解读 https://blog.csdn.net/mijiaoxiaosan/article/details/74909076

  • 相关阅读:
    如何解决MathPage.wll或MathType.dll文件找不到问题
    2-构建模型
    R语言 ur.df函数(2)
    平稳过程趋势项变点的 CUSUV 检验 秦瑞兵,郭娟
    时间序列的弱相依与强相依
    Cent OS|使用httpd发布网页
    C++练习 | 基于栈的中缀算术表达式求值(double类型
    C++练习 | 不使用头插法逆转单链表
    C++练习 | 单链表的创建与输出(结构体格式)
    C++练习 | 最长公共字符串(DP)
  • 原文地址:https://www.cnblogs.com/yifanrensheng/p/13337002.html
Copyright © 2011-2022 走看看