zoukankan      html  css  js  c++  java
  • 逻辑回归(Logistic Regression)

    import numpy as np
    import random
    
    def genData(numPoints,bias,variance):#实例 偏好 方差
        x = np.zeros(shape=(numPoints,2))#行列
        y = np.zeros(shape=(numPoints))#
        for i in range(0,numPoints):#0->numPoints-1
            x[i][0]=1
            x[i][1]=i
            y[i]=(i+bias)+random.uniform(0,1)+variance
        return x,y
    
    def gradientDescent(x,y,theta,alpha,m,numIterations):
        xTran = np.transpose(x)
        for i in range(numIterations):
            hypothesis = np.dot(x,theta)
            loss = hypothesis-y
            cost = np.sum(loss**2)/(2*m)
            gradient=np.dot(xTran,loss)/m
            theta = theta-alpha*gradient
            print ("Iteration %d | cost :%f" %(i,cost))
        return theta
    
    x,y = genData(100, 25, 10)
    print "x:"
    print x
    print "y:"
    print y
    
    m,n = np.shape(x)
    n_y = np.shape(y)
    
    print("m:"+str(m)+" n:"+str(n)+" n_y:"+str(n_y))
    
    numIterations = 1000
    
    alpha = 0.0005
    theta = np.ones(n)
    theta= gradientDescent(x, y, theta, alpha, m, numIterations)
    print(theta)

    相关度(皮尔森相关系数)衡量两个值线性相关强度的量

    R平方值 反应因变量的全部变异能通过回归关系被自变量解释的比例

  • 相关阅读:
    null和undefined的区别
    "NetworkError: 404 Not Found fontawesome-webfont.woff?v=4.0.3
    php字符串
    php数组
    Oracle 和 MySQL的区别(不完整)
    拦截器和过滤器的区别
    SpringMVC和Struts2的区别
    Redis的介绍
    SpringBoot入门(2)
    SpringBoot入门(1)
  • 原文地址:https://www.cnblogs.com/wlc297984368/p/7467620.html
Copyright © 2011-2022 走看看