zoukankan      html  css  js  c++  java
  • ONNX Runtime

    https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html

    1 定义模型

    跟一般模型定义并无区别,需要torch_model.eval()或者torch_model.train(False)将模型转换为推理模型(一般dropout、batchnorm在推理和训练模式中有区别)。

    2 导出模型(torch.onnx.export())

    (1)export会运行模型,所以需要提供一个输入x。注意这里的x并非模型预测时的输入

    (2)输入x值任意,但是大小、类型必须正确。

    (3)如何不指定动态轴(dynamic_axes),模型输入x的各个维度上大小将固定,[batch_size, 1, 224, 224]中batch_size可以是变量。

    # Input to the model
    x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
    # torch_out = torch_model(x)  #这个是不使用onnx runtime进行模型预测推理的结果,参考比较用的
    
    # Export the model
    torch.onnx.export(torch_model,               # model being run
                      x,                         # model input (or a tuple for multiple inputs)
                      "super_resolution.onnx",   # where to save the model (can be a file or file-like object)
                      export_params=True,        # store the trained parameter weights inside the model file
                      opset_version=10,          # the ONNX version to export the model to
                      do_constant_folding=True,  # whether to execute constant folding for optimization
                      input_names = ['input'],   # the model's input names
                      output_names = ['output'], # the model's output names
                      dynamic_axes={'input' : {0 : 'batch_size'},    # variable length axes
                                    'output' : {0 : 'batch_size'}})

    3、加载、检测模型(onnx.load(),onnx.checker.check_model())

    (1)加载模型后会生成一个onnx.ModelProto结构,其会绑定一个ML model。

    import onnx
    
    onnx_model = onnx.load("super_resolution.onnx")
    onnx.checker.check_model(onnx_model)

    4 运行、输入、输出模型(run())

    (1)推理模型的输入为一个字典结构:{'输入名称': to_numpy(x)}

    ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}

    (2)为了用ONNX Runtime运行模型,需要创建一个推理session,需要输入配置参数,下面是default config。

    ort_session = onnxruntime.InferenceSession("super_resolution.onnx")

    (3)输出一个list,其包含了ONNX Runtime计算的模型结果。

    import onnxruntime
    
    ort_session = onnxruntime.InferenceSession("super_resolution.onnx")
    
    def to_numpy(tensor):
        return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
    
    # compute ONNX Runtime output prediction
    ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
    ort_outs = ort_session.run(None, ort_inputs)
    
    # compare ONNX Runtime and PyTorch results
    np.testing.assert_allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)
    
    print("Exported model has been tested with ONNXRuntime, and the result looks good!")

    5 一个完整的案例

    模型:First, let’s create a SuperResolution model in PyTorch. This model uses the efficient sub-pixel convolution layer described in “Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network” - Shi et al for increasing the resolution of an image by an upscale factor. The model expects the Y component of the YCbCr of an image as an input, and outputs the upscaled Y component in super resolution.

     

    import io
    import numpy as np
    from torch import nn
    import torch.utils.model_zoo as model_zoo
    import torch.onnx
    import torch.nn.init as init
    from PIL import Image
    import torchvision.transforms as transforms
    import onnxruntime
    import onnx
    
    #前一半:导出模型
    class SuperResolutionNet(nn.Module):
        def __init__(self, upscale_factor, inplace=False):
            super(SuperResolutionNet, self).__init__()
    
            self.relu = nn.ReLU(inplace=inplace)
            self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
            self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
            self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
            self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
            self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
    
            self._initialize_weights()
    
        def forward(self, x):
            x = self.relu(self.conv1(x))
            x = self.relu(self.conv2(x))
            x = self.relu(self.conv3(x))
            x = self.pixel_shuffle(self.conv4(x))
            return x
    
        def _initialize_weights(self):
            init.orthogonal_(self.conv1.weight, init.calculate_gain('relu'))
            init.orthogonal_(self.conv2.weight, init.calculate_gain('relu'))
            init.orthogonal_(self.conv3.weight, init.calculate_gain('relu'))
            init.orthogonal_(self.conv4.weight)
    
    
    # Create the super-resolution model by using the above model definition.
    torch_model = SuperResolutionNet(upscale_factor=3)
    
    # Load pretrained model weights
    model_url = 'https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth'
    batch_size = 1  # just a random number
    
    # Initialize model with the pretrained weights
    map_location = lambda storage, loc: storage
    if torch.cuda.is_available():
        map_location = None
    torch_model.load_state_dict(model_zoo.load_url(model_url, map_location=map_location))
    
    # set the model to inference mode
    torch_model.eval()
    
    # Input to the model
    x = torch.randn(batch_size, 1, 224, 224, requires_grad=True)
    torch_out = torch_model(x)
    
    # Export the model
    torch.onnx.export(torch_model,  # model being run
                      x,  # model input (or a tuple for multiple inputs)
                      "super_resolution.onnx",  # where to save the model (can be a file or file-like object)
                      export_params=True,  # store the trained parameter weights inside the model file
                      opset_version=10,  # the ONNX version to export the model to
                      do_constant_folding=True,  # whether to execute constant folding for optimization
                      input_names=['input'],  # the model's input names
                      output_names=['output'],  # the model's output names
                      dynamic_axes={'input': {0: 'batch_size'},  # variable length axes
                                    'output': {0: 'batch_size'}})
    
    # 后一半:导入模型
    onnx_model = onnx.load("super_resolution.onnx")
    onnx.checker.check_model(onnx_model)
    
    ort_session = onnxruntime.InferenceSession("super_resolution.onnx")
    
    
    def to_numpy(tensor):
        return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
    
    
    img = Image.open("cat.jpg")
    resize = transforms.Resize([224, 224])
    img = resize(img)
    img_ycbcr = img.convert('YCbCr')
    img_y, img_cb, img_cr = img_ycbcr.split()
    to_tensor = transforms.ToTensor()
    img_y = to_tensor(img_y)
    img_y.unsqueeze_(0)
    # 输入
    ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(img_y)}
    # 运行
    ort_outs = ort_session.run(None, ort_inputs)
    # 输出处理
    img_out_y = ort_outs[0]
    img_out_y = Image.fromarray(np.uint8((img_out_y[0] * 255.0).clip(0, 255)[0]), mode='L')
    # get the output image follow post-processing step from PyTorch implementation
    # 合成输出图片
    final_img = Image.merge(
        "YCbCr", [
            img_out_y,
            img_cb.resize(img_out_y.size, Image.BICUBIC),
            img_cr.resize(img_out_y.size, Image.BICUBIC),
        ]).convert("RGB")
    
    # Save the image, we will compare this with the output image from mobile device
    final_img.save("cat_superres_with_ort.jpg")
    View Code

     

  • 相关阅读:
    项目总结1--技术
    基于MFC的Opengl实现动画
    vs2010 MFC Opengl实现
    设计模式-状态模式
    设计模式-访问者模式
    设计模式-责任链模式
    设计模式-中介者模式
    设计模式-命令模式
    设计模式-备忘录模式
    设计模式-观察者模式
  • 原文地址:https://www.cnblogs.com/wllwqdeai/p/15749372.html
Copyright © 2011-2022 走看看